Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 9OQ
A sailor drops a wrench from the top of a sailboat’s vertical mast while the boat is moving rapidly and steadily straight forward. Where will the wrench hit the deck? (a) ahead of the base of the mast (b) at the base of the mast (c) behind the base of the mast (d) on the windward side of the base of the mast (e) None of the choices (a) through (d) is true.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a live fire exercise, an Army artillery team fires an artillery shell from a howitzer (a relatively small cannon). The barrel makes an angle of 54.0 ° above the horizontal, and the velocity of the projectile as it exits the barrel is 370 m / s. The projectile hits a target on a mountainside 39.0 s after being fired. Assuming that the point where the projectile exits the barrel is the origin, and assuming as usual that the x-axis is horizontal and the y-axis is vertical, find the x and y coordinates, in meters, of the target.
3. A cannon on Earth (located at the origin) launches a projectile, of mass
m, horizontally at height y = 0 m with speed vo, as shown in the figure
below:
y (m) ↑
x (m)
Fw
There is a strong wind that imparts a force with constant magnitude Fw,
in the negative x-direction, on the projectile as it is airborne.
Vo
A lowly high diver pushes off horizontally with a speed of 2.63 m/s from the edge of a platform that is 10.0 m above the surface of the
water. (a) At what horizontal distance from the edge of the platform is the diver 0.834 s after pushing off? (b) At what vertical distance
above the surface of the water is the diver just then? (c) At what horizontal distance from the edge of the platform does the diver strike
the water?
(a) Number
i
Units
(b) Number
i
Units
(c) Number
i
Units
>
>
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 4.1 - Consider the following controls in an automobile...Ch. 4.3 - (i) As a projectile thrown at an upward angle...Ch. 4.3 - Rank the launch angles for the five paths in...Ch. 4.4 - A particle moves in a circular path of radius r...Ch. 4.5 - A particle moves along a path, and its speed...Ch. 4 - Prob. 1OQCh. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - Prob. 4OQCh. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - Prob. 7OQCh. 4 - Prob. 8OQCh. 4 - A sailor drops a wrench from the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - A set of keys on the end of a string is swung...Ch. 4 - A rubber stopper on the end of a string is swung...Ch. 4 - Prob. 13OQCh. 4 - A spacecraft drifts through space at a constant...Ch. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - A projectile is launched at some angle to the...Ch. 4 - Construct motion diagrams showing the velocity and...Ch. 4 - Explain whether or not the following particles...Ch. 4 - Prob. 1PCh. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - Prob. 9PCh. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - Prob. 12PCh. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - Prob. 14PCh. 4 - A projectile is fired in such a way that its...Ch. 4 - Prob. 16PCh. 4 - Chinook salmon are able to move through water...Ch. 4 - Prob. 18PCh. 4 - The speed of a projectile when it reaches its...Ch. 4 - Prob. 20PCh. 4 - A firefighter, a distance d from a burning...Ch. 4 - Prob. 22PCh. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - Prob. 30PCh. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Prob. 35PCh. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Figure P4.40 represents the total acceleration of...Ch. 4 - Prob. 41PCh. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A river flows with a steady speed v. A student...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - Prob. 56APCh. 4 - Prob. 57APCh. 4 - A particle starts from the origin with velocity...Ch. 4 - Prob. 59APCh. 4 - Prob. 60APCh. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - Prob. 63APCh. 4 - Prob. 64APCh. 4 - Prob. 65APCh. 4 - Prob. 66APCh. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - Prob. 69APCh. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - Prob. 71APCh. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - Prob. 76APCh. 4 - Prob. 77APCh. 4 - Prob. 78APCh. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Prob. 80APCh. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - Prob. 83CPCh. 4 - Prob. 84CPCh. 4 - Prob. 85CPCh. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - Prob. 89CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A lowly high diver pushes off horizontally with a speed of 2.88 m/s from the edge of a platform that is 10.0 m above the surface of the water. (a) At what horizontal distance from the edge of the platform is the diver 0.875 s after pushing off? (b) At what vertical distance above the surface of the water is the diver just then? (c) At what horizontal distance from the edge of the platform does the diver strike the water?arrow_forwardWhen a field goal kicker kicks a football as hard as he can at 45° to the horizontal, the ball just clears the 3-m high crossbar of the goalposts 45.7 m away. (a) What is the maximum speed the kicker can impart to the football? (b) In addition to clearing the crossbar, the football must be high enough in the air early during its flight to clear the reach of the onrushing defensive lineman. If the lineman is 4.6 m away and has a vertical reach of 2.5 m, can he block the 45.7-m field goal attempt? (c) What if the lineman is 1.0 m away?arrow_forwardDuring a tennis match, a player serves the ball at 23.6 m/s, with the center of the ball leaving the racquet horizontally 2.37 m above the court surface. The net is 12 m away and 0.90 m high.When the ball reaches the net, (a) does the ball clear it and (b) what is the distance between the center of the ball and the top of the net? Suppose that, instead, the ball is served as before but now it leaves the racquet at 5.00° below the horizontal.When the ball reaches the net, (c) does the ball clear it and (d) what now is the distance between the center of the ball and the top of the net?arrow_forward
- A projectile is launched with an initial speed of 45.0 m/s at an angle of 31.0° above the horizontal. The projectile lands on a hillside 3.50 s later. Neglect air friction. (Assume that the +x-axis is to the right and the +y-axis is up along the page.) (a) What is the projectile's velocity at the highest point of its trajectory? magnitude m/s direction ° counterclockwise from the +x-axis (b) What is the straight-line distance from where the projectile was launched to where it hits its target? marrow_forwardDuring a tennis match, a player serves the ball at 23.6 m/s, with the center of the ball leaving the racquet horizontally 2.60 m above the court surface. The net is 12.0 m away and 0.900 m high. When the ball reaches the net, (a) what is the distance between the center of the ball and the top of the net? (b) Suppose that, instead, the ball is served as before but now it leaves the racquet at 5.00° below the horizontal. When the ball reaches the net, what now is the distance between the center of the ball and the top of the net? Enter a positive number if the ball clears the net. If the ball does not clear the net, your answer should be a negative number. Use g=9.81 m/s?.arrow_forwardA home-run baseball with an initial speed of 46.0 m/s lands exactly 109 m away from home plate. Neglecting air resistance, (a1) what angle less than or equal to 45º would achieve this result? A homerun baseball with an initial speed of 46.0 m/s lands exactly 109 m away from home plate. Neglecting air resistance, (a2) what angle greater than or equal to 45º would achieve this result? A home-run baseball with an initial speed of 46.0 m/s lands exactly 109 m away from home plate. (b1) What is the maximum height reached by the ball, using the angle less than or equal to 45º? A home-run baseball with an initial speed of 46.0 m/s lands exactly 109 m away from home plate. (b1) What is the maximum height reached by the ball, using the angle greater than or equal to 45º?arrow_forward
- During a tennis match, a player serves the ball at 23.6 m/s, with the center of the ball leaving the racquet horizontally 2.60 m above the court surface. The net is 12.0 m away and 0.900 m high. When the ball reaches the net, (a) what is the distance between the center of the ball and the top of the net? (b) Suppose that, instead, the ball is served as before but now it leaves the racquet at 5.00° below the horizontal. When the ball reaches the net, what now is the distance between the center of the ball and the top of the net? Enter a positive number if the ball clears the net. If the ball does not clear the net, your answer should be a negative number. Use g=9.81 m/s?. Please explain step by step with drawing.. thank you.arrow_forwardA cannon is firing from the top of a hill, forming a π/6 angle with the horizontal plane. The barrel of the cannon form a certain height with the horizontal plane at the time of the firing, and its is fired so that the projectile lands on the bottom part of the hill 6 kilometers from the cannon. Determine the projectile's minimum speed at the time it was shot from the barrel, as well as the magnitude of the barrel's elevation. Ignore any opposing forces.arrow_forwardAn archer fish spies a meal of a grasshopper sitting on a long stalk of grass at the edge of the pond in which he is swimming. The fish is to successfully spit at and strike the grasshopper, which is 0.200 m away horizontally and 0.335 m above his mouth. What angle (in degrees) above the horizontal must he spit?arrow_forward
- A playground is on the flat roof of a city school, h = 6.00 m above the street below (see figure). The vertical wall of the building is h = 7.50 m high, to form a 1.5-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of 0 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (a) Find the speed at which the ball was launched. (No Response) m/s (b) Find the vertical distance by which the ball clears the wall. (No Response) m (c) Find the horizontal distance from the wall to the point on the roof where the ball lands. (No Response) marrow_forwardA playground is on the flat roof of a city school, hb = 5.00 m above the street below (see figure). The vertical wall of the building is h = 6.20 m high, to form a 1.2-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of θ = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. A man on the ground kicking a ball to children on a flat rooftop is shown. The distance between the man and the building is labeled d. The height of the left wall of the building is labeled h. The motion of the ball is depicted as a parabola originating from the man on the ground and ending at the rooftop. The vector of the initial motion of the ball makes an angle θ with the horizontal. (a) Find the speed at which the ball was launched. m/s(b) Find the vertical distance by which the ball clears the wall. m(c) Find the horizontal…arrow_forwardA playground is on the flat roof of a city school, hb = 5.10 m above the street below (see figure). The vertical wall of the building is h = 6.50 m high, to form a 1.4-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of θ = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (a) Find the speed at which the ball was launched.m/s(b) Find the vertical distance by which the ball clears the wall.m(c) Find the horizontal distance from the wall to the point on the roof where the ball lands.marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY