Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 16P
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A firework rocket is 85 m above the ground when it explodes. Immediately after the explosion one piece is moving 51 m/s at 23° to the upward vertical direction. A second piece is moving at 38 m/s at 11° below the horizontal direction. What what horizontal distance from the explosion site does each piece land?
To start an avalanche on a mountain slope, an artillery shell is fired with an initial velocity of 320 m/s at 45.0° above the horizontal. It explodes on the mountainside 37.0s
after firing. What are the x and y coordinates of the shell where it explodes, relative to its firing point?
x = 8371.99
y = 1663.89
An artillery shell is fired with an initial velocity of 300 m/s at 64.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 48.0 s after firing. What are the x- and y-coordinates of the shell where it explodes, relative to its firing point?
x= ?
y= ?
Chapter 4 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 4.1 - Consider the following controls in an automobile...Ch. 4.3 - (i) As a projectile thrown at an upward angle...Ch. 4.3 - Rank the launch angles for the five paths in...Ch. 4.4 - A particle moves in a circular path of radius r...Ch. 4.5 - A particle moves along a path, and its speed...Ch. 4 - Prob. 1OQCh. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - Prob. 4OQCh. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - Prob. 7OQCh. 4 - Prob. 8OQCh. 4 - A sailor drops a wrench from the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - A set of keys on the end of a string is swung...Ch. 4 - A rubber stopper on the end of a string is swung...Ch. 4 - Prob. 13OQCh. 4 - A spacecraft drifts through space at a constant...Ch. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - A projectile is launched at some angle to the...Ch. 4 - Construct motion diagrams showing the velocity and...Ch. 4 - Explain whether or not the following particles...Ch. 4 - Prob. 1PCh. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - Prob. 9PCh. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - Prob. 12PCh. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - Prob. 14PCh. 4 - A projectile is fired in such a way that its...Ch. 4 - Prob. 16PCh. 4 - Chinook salmon are able to move through water...Ch. 4 - Prob. 18PCh. 4 - The speed of a projectile when it reaches its...Ch. 4 - Prob. 20PCh. 4 - A firefighter, a distance d from a burning...Ch. 4 - Prob. 22PCh. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - Prob. 30PCh. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Prob. 35PCh. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Figure P4.40 represents the total acceleration of...Ch. 4 - Prob. 41PCh. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A river flows with a steady speed v. A student...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - Prob. 56APCh. 4 - Prob. 57APCh. 4 - A particle starts from the origin with velocity...Ch. 4 - Prob. 59APCh. 4 - Prob. 60APCh. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - Prob. 63APCh. 4 - Prob. 64APCh. 4 - Prob. 65APCh. 4 - Prob. 66APCh. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - Prob. 69APCh. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - Prob. 71APCh. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - Prob. 76APCh. 4 - Prob. 77APCh. 4 - Prob. 78APCh. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Prob. 80APCh. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - Prob. 83CPCh. 4 - Prob. 84CPCh. 4 - Prob. 85CPCh. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - Prob. 89CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A mortar shell has an initial velocity v0= 13 m/s, at an angle θ0=60º. At the maximum height of the trajectory the shell explodes into two equal pieces. One piece has a speed immediately after the explosion of zero then falls vertically. How far horizontally does the other fragment land from where it was fired.arrow_forwardFor safety reasons, park rangers decide to start an avalanche on a mountain slope. They fire an artillery shell at an angle of 520 above the horizontal with an initial speed of 295 m/s. Thirty seconds later they see the explosion. What is the x coordinates of the shell where it explodes, relative to the firing point?arrow_forwardFor a forensics experiment, a student decides to measure the muzzle velocity of the pellets from his BB gun. She points the gun horizontally. On a vertical wall a distance 47.3 m away from the gun, a target is placed. The shots hit the target a vertical distance 0.10 m below the gun's barrel. What is the initial speed of the pellets? Your Answer: units Answerarrow_forward
- An artillery shell is fired with an initial velocity of 300 m/s at 51.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 47.0 s after firing. What are the x- and y-coordinates of the shell where it explodes, relative to its firing point?arrow_forwardA group of collegiate golfers invent a game where they have to hit a golf ball up to the roof of a building that is about 23.76 m tall. The hole is 3.3 m away from the edge of the roof (label this in the figure). The roof is perfectly level all the way across. a)Isabella strikes the ball causing it to launch from the ground with an initial velocity of 22.70 m/s and at an angle of θ = 72.00 . Is it possible for Isabella to make her shot to the roof? Ignore wind resistance for part (a). b)How far away from the edge of the building must Isabella stand to get the ball onto the roof (D=?)? Ignore wind resistance for part b.arrow_forwardA group of collegiate golfers invent a game where they have to hit a golf ball up to the roof of a building that is about 23.76 m tall. The hole is 3.3 m away from the edge of the roof (label this in the figure). The roof is perfectly level all the way across. a) Isabella strikes the ball causing it to launch from the ground with an initial velocity of 22.70 m/s and at an angle of θ = 72.00 . Is it possible for Isabella to make her shot to the roof? Ignore wind resistance for part (a). b) How far away from the edge of the building must Isabella stand to get the ball onto the roof (D=?)? Ignore wind resistance for part b. c) Assuming that Isabella’s shot from part (a) made it to the roof and the shot is line up to go into the hole that is 3.30 m away from the edge of the roof. The golf ball has a mass of 45.93 g, and experiences a friction force of f=0.133 N. If the ball’s speed is larger than 5.90 m/s when at the hole it will be moving too fast and not go in. Will Isabella’s shot go…arrow_forward
- A group of collegiate golfers invent a game where they have to hit a golf ball up to the roof of a building that is about 23.76 m tall. The hole is 3.3 m away from the edge of the roof (label this in the figure). The roof is perfectly level all the way across. a) Isabella strikes the ball causing it to launch from the ground with an initial velocity of 22.70 m/s and at an angle of θ = 72.00 . Is it possible for Isabella to make her shot to the roof? Ignore wind resistance for part (a). b) Assuming that Isabella’s shot from part (a) made it to the roof and the shot is line up to go into the hole that is 3.30 m away from the edge of the roof. The golf ball has a mass of 45.93 g, and experiences a friction force of f=0.133 N. If the ball’s speed is larger than 5.90 m/s when at the hole it will be moving too fast and not go in. Will Isabella’s shot go into the hole? Explain why she does make or does not make it in the hole.arrow_forwardA boy is standing from the top of a cliff 8 m from the ground and he has a bow which is aimed 40 degrees from the horizontal. He can release the bow with an initial velocity of 15 m/s. An animal is below the cliff and is moving towards the boy at a velocity of 5 m/s. For the bow to hit the animal, at what distance D should the animal be when the bow is fired?arrow_forwardAn artillery shell is fired with an initial velocity of 300 m/s at 63.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 48.0 s after firing. Question: What are the x- and y-coordinates of the shell where it explodes, relative to its firing point?arrow_forward
- An artillery shell is fired with an initial velocity of 300 m/s at 50.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 36.0 s after firing. What are the x and y components of the shell where it explodes, relative to its firing point? x = m y = marrow_forwardA hot air balloon rises from the ground with a velocity of (2.00m/s)y. A stone is expelled horizontally with a velocity of (5.00m/s)x relative to the balloon when expelled, the stone is seen by an observer on the ground. (a) What is the initial velocity of the stone as x and y unit vectors? (b) What are the speed of the stone and its initial direction of motion as seen by the same observer. (c) Determine the maximum height above the ground attained by the stone. (d) For what amount of time does the stone remain in the air?arrow_forwardA rugby player runs with the ball directly toward his opponent’s goal, along the positive direction of an x axis. He can legally pass the ball to a teammate as long as the ball’s velocity relative to the field does not have a positive x component. Suppose the player runs at speed 4.0 m/s relative to the field while he passes the ball with velocity relative to himself. If has magnitude 6.0 m/s, what is the smallest angle it can have for the pass to be legal?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY