Concept explainers
Consider the same two concentric cylinders of Prob. 4-44. This time, however, the inner cylinder is rotating. but the outer cylinder is stationary. In the limit, as the outer cylinder is very large compared to the inner cylinder (imagine the inner cylinder spinning very fast while its radius gets very small), what kind of flow does this approximate? Explain. After a long time has passed, generate an expression for the tangential velocity profile, namely
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Fluid Mechanics: Fundamentals and Applications
- 4. Problem 4-42: The velocity field for solid-body rotation in the re-plane (Fig. P4-42) is given by u, = 0 ue = wr Where w is the magnitude of the angular velocity (@ points in the z-direction). For the case with w = 1.5 s, plot a contour plot of velocity magnitude (speed). Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5, 2.0, and 2.5 m/s. Be sure to label these speeds on your plot. FIGURE P4-42arrow_forwardi didnt understand 3 fluid mechanics questions. please help me :) i will send of the three partarrow_forwardPravin bhaiarrow_forward
- A common flow encountered in practice is the crossflow of a fluid approaching a long cylinder of radius R at a free stream speed of U∞. For incompressible inviscid flow, the velocity field of the flow is given as in fig. Show that the velocity field satisfies the continuity equation, and determine the stream function corresponding to this velocity field.arrow_forward1. If u- 3x'yr and v = -6x'y'r answer the following questions giving reasons, Is this flow or fluid: (a) Real (Satisfies Continuity Principle). (b) Steady or unsteady. (c) Uniform or non-uniform. (d) One, two, or three dimensional. (e) Compressible or incompressible. Also, Find the acceleration at point (1,1). %3Darrow_forward4s-1, Given the velocity field V = Axî – Ayĵ, where A %3D (a) Sketch the velocity field. (you can do this by hand or use software of your choice)arrow_forward
- The velocity field for a line vortex in the r?-plane is given byur = 0 u? = K / rwhere K is the line vortex strength. For the case with K = 1.5 m/s2, plot a contour plot of velocity magnitude (speed). Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5, 2.0, and 2.5 m/s. Be sure to label these speeds on your plot.arrow_forwardEngine oil at 60°C rotates as a rigid body about the z-axis in a spinning cylindrical container. There are no viscous stresses since the water moves as a solid body; thus the Euler equation is appropriate. (We neglect viscous stresses caused by air acting on the water surface.) Integrate the Euler equation to generate an expression for pressure as a function of r and z everywhere in the water. Write an equation for the shape of the free surface (zsurface as a function of r). (Hint: P = Patm everywhere on the free surface. The flow is rotationally symmetric about the z-axis.)arrow_forwardA incompressible, steady, velocity field is given by the following components in the x-y plane: u = 0.205 + 0.97x + 0.851y ; v = v0 + 0.5953x - 0.97y How would I calculated the acceleration field (ax and ay), and the acceleration at the point, v0= -1.050 ? Any help would be greatly appreciated :)arrow_forward
- Consider 3D flow with velocity components below. u=x²+2xy v=2x-y²+z² w=-2xz+y² Is this flow incompressible? Show your work. b. Is this flow irrotational? Show your work.arrow_forwardConsider the configuration shown below with w1 = 2.5 rad/s, w2 = 1.0 rad/s, and wz = 5.4 rad/s. Find the magnitude of velocity at point P of the disk B3. 0.2 m 0.4 m Bz- @, rad/s 0.3 m 0, rad/s 0.1 m @z rad/s Figure is from "Engineering Mechanic An Introduction to Dynamics", McGill and King.arrow_forwardAy j. Is this a possible case of incompres- 3.9 A velocity field is given by V= Axyi -- %3D sible flow? If yes, obtain the stream function and find the value of constant A for which the flow rate between the streamlines passing through the points (3, 3) and (3, 4) is 18 units. Axy Ans: V = 12 + C, A 7 2arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY