Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 44P
Find expressions for the force needed to bring an object of mass m from rest to speed v (a) in lime Δt and (b) over distance Δx.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A person with mass m is skateboarding across level ground on earth with a speed vo when they
come to a small slope that raises them a distance h higher than ground level over a distance d, as
shown in the figure below. A frictional force with magnitude F, is also acting on the skateboard
opposing the direction of motion as it travels up the slope.
i
●)
d →
i
●)
●)
a) Derive an expression using the defined variables (and g) for the speed of the person after
they reach the top of the slope.
b) If the person's mass m = 50 kg, their initial speed is vo = 3 m/s, the slope raises them
h = 0.4 m over a distance of d = 2 m and the magnitude of the force of friction is
F, = 2 N, what is their speed at the top of the slope?
(a) A spaceship is projected vertically upward from the Earth's surface with an initial speed of 5.51 km/s, but unfortunately does not have a great enough speed to escape Earth's gravity.
What maximum height does the spaceship reach (in m)? Ignore air resistance.
1.549e6
x
Apply the conservation of mechanical energy, where v, = 0. You witt need to know the radius and mass of the Earth. Be careful with your signs when writing the potential energy
expressions. Note that you can use energy conservation to write the initial potential energy of the system in terms of the escape velocity. Solve your equation for h. m
initially at rest with
(b) A meteorold falls from a height of 2.41 x 107 m above the surface of the Earth. What is the speed (in m/s) when the meteorite hits the Earth? Assume the meteoroid
respect to the Earth. (Note that a meteorite is a meteorold that makes it to Earth's surface.)
m/s
The radius of Venus (from the center to just above the atmosphere) is 6050 km (6050x10³ m), and its mass is 4.9x1024 kg. An object is launched straight up from just above the atmosphere of Venus.
(a) What initial speed is needed so that when the object is far from Venus its final speed is 5000 m/s?
Vinitial = 5000
(b) What initial speed is needed so that when the object is far from Venus its final speed is 0 m/s? (This is called the "escape speed.")
Vescape
X m/s
m/s
Additional Materials
еВook
Chapter 4 Solutions
Essential University Physics (3rd Edition)
Ch. 4.2 - A curved barrier lies on a horizontal tabletop, as...Ch. 4.2 - A nonzero net force acts on an object. Which of...Ch. 4.4 - A popular childrens book explains the...Ch. 4.5 - For each of the following situations, would the...Ch. 4.6 - The figure shows two blocks with two forces acting...Ch. 4.6 - (1) Would the answer to (a) in Example 4.5 change...Ch. 4 - Distinguish the Aristotelian and Galilean/New...Ch. 4 - A ball bounces off a wall with the same speed it...Ch. 4 - We often use the term inertia to describe human...Ch. 4 - Does a body necessarily move in the direction of...
Ch. 4 - A truck crashes into a stalled car. A student...Ch. 4 - A barefoot astronaut kicks a ball, hard, across a...Ch. 4 - The surface gravity on Jupiters moon Io is...Ch. 4 - In paddling a canoe, you push water backward with...Ch. 4 - Is it possible for a nonzero net force to act on...Ch. 4 - As your plane accelerates down the runway, you...Ch. 4 - A driver tells passengers to buckle their...Ch. 4 - If you cut a spring in half, is the spring...Ch. 4 - As youre sitting on a chair, theres a...Ch. 4 - Section 4.2 Newtons First and Second Laws A subway...Ch. 4 - A 61-Mg railroad locomotive can exert a 0.12-MN...Ch. 4 - A small plane accelerates down the runway at 7.2...Ch. 4 - A car leaves the road traveling at 110 km/h and...Ch. 4 - By how much does the force required to stop a car...Ch. 4 - Kinesin is a motor protein responsible for moving...Ch. 4 - Starting from rest and undergoing constant...Ch. 4 - In an egg-dropping contest, a student encases an...Ch. 4 - In a front-end collision, a 1300-kg car with...Ch. 4 - Show that the units of acceleration can be written...Ch. 4 - Your spaceship crashes on one of the Suns planets....Ch. 4 - Your friend can barely lift a 35-kg concrete block...Ch. 4 - A cereal box says net weight 340 grams. Whats the...Ch. 4 - Youre a safely engineer for a bridge spanning the...Ch. 4 - The gravitational acceleration at the...Ch. 4 - A 50-kg parachutist descends at a steady 40 km/h....Ch. 4 - A 930-kg motorboat accelerates away from a dock at...Ch. 4 - An elevator accelerates downward at 2.4 m/s2. What...Ch. 4 - At 560 metric tons, the Airbus A-380 is the worlds...Ch. 4 - Youre an engineer working on Ares I, NASAs...Ch. 4 - You slop into an elevator, and it accelerates to a...Ch. 4 - What upward gravitational force does a 5600-kg...Ch. 4 - Your friends mass is 65 kg. If she jumps off a...Ch. 4 - What force is necessary to stretch a spring 48 cm,...Ch. 4 - A 35-N force is applied to a spring with spring...Ch. 4 - A spring with spring constant k = 340 N/m is used...Ch. 4 - A 1.25-kg object is moving in the x-direction at...Ch. 4 - An airplane encounters sudden turbulence, and you...Ch. 4 - A 74-kg tree surgeon rides a cherry picker lift to...Ch. 4 - A dancer executes a vertical jump during which the...Ch. 4 - Find expressions for the force needed to bring an...Ch. 4 - An elevator moves upward at 5.2 m/s. Whats its...Ch. 4 - A 2.50-kg object is moving along the x-axis at...Ch. 4 - Blocks of 1.0, 2.0, and 3.0 kg are lined up on a...Ch. 4 - A child pulls an 11-kg wagon with a horizontal...Ch. 4 - Biophysicists use an arrangement of laser beams...Ch. 4 - A force F is applied to a spring of spring...Ch. 4 - A 22(M)-kg airplane pulls two gliders, the first...Ch. 4 - A biologist is studying the growth of rats on the...Ch. 4 - An elastic towrope has spring constant 1300 N/m....Ch. 4 - A 2.0-kg mass and a 3.0-kg mass are on a...Ch. 4 - Youre an automotive engineer designing the crumple...Ch. 4 - Frogs tongues dart out to catch insects, with...Ch. 4 - Two large crates, with masses 640 kg and 490 kg,...Ch. 4 - What force do the blades of a 4300-kg helicopter...Ch. 4 - What engine thrust (force) is needed to accelerate...Ch. 4 - Your engineering firm is asked to specify the...Ch. 4 - With its fuel tanks half full, an F-35A jet...Ch. 4 - Two springs have the same unstretched length but...Ch. 4 - Although we usually write Newtons second law for...Ch. 4 - A railroad car is being pulled beneath a grain...Ch. 4 - A block 20% more massive than you hangs from a...Ch. 4 - Youre asked to calibrate a device used to measure...Ch. 4 - A spider of mass ms drapes a silk thread of...Ch. 4 - Figure 4.27 shows vertical accelerometer data from...Ch. 4 - A hockey stick is in contact with a 165-g puck for...Ch. 4 - After parachuting through the Martian atmosphere,...Ch. 4 - Your airplane is caught in a brief, violent...Ch. 4 - Youre assessing the Engineered Material Arresting...Ch. 4 - Two masses are joined by a massless string. A 30-N...Ch. 4 - A mass M hangs from a uniform rope of length L and...Ch. 4 - Jerk is the rate of change of acceleration, and...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which of the roll owing compounds have a dipole moment of zero?
Organic Chemistry (8th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . Existence and Uniqueness Theorem. A motorboat of total mass m = 200kg is facing the shoreline and drifting away at 0.5 m/s. In order to return to shore you apply a constant force of 100 Newtons in the direction of the shore. However, the boat is also subject to a drag force of 400v² where v is the velocity in m/s. (a) Find the ODE satisfied by v(t), the velocity in the direction away from the shore, where t is measured in seconds. (b) Find v(t). (c) How many seconds pass before the boat starts heading toward the shore? (d) What is the interval of existence of the solution? Explain how this is consistent with the Existence and Uniqueness Theorem.arrow_forwardThe radius of Venus (from the center to just above the atmosphere) is 6050 km (6050x103 m), and its mass is 4.9x1024 kg. An object is launched straight up from just above the atmosphere of Venus. (a) What initial speed is needed so that when the object is far from Venus its final speed is 3000 m/s? Vinitial = 10100 X m/s (b) What initial speed is needed so that when the object is far from Venus its final speed is 0 m/s? (This is called the "escape speed.") Vescape = m/sarrow_forwardImagine a skydiver with a mass of m jumping out of an airplane at an altitude of h. As the skydiver descends, they experience two forces: air resistance and gravity. The force of air resistance varies with time and is described by the following function, where t is the time in seconds since t e skydiver has jumped: vec 2 (F)(t) = (0.5t)ha (x) + (0.11 +0.3t)hat(y) a) Create a air free body diagrar for the skydiver at t = 2 seconds. b) - What is the net for e acting on the skydiver at t = 2 seconds? c) What i the magnitude of the acceleration of the skydiver at t = 2 seconds? Imagine a skydiver with a mass of m jumping out of an airplane at an altitude of h. As the skydiver descends, they experience two forces: air resistance and gravity. The force of air resistance varies with time and is described by the following function, where t is the time in seconds since the skydiver has jumped: Fair (t) = (0.5t)2 + (0.12 + 0.3t)ŷ a) Create a free-body diagram for the skydiver at t = 2 seconds.…arrow_forward
- A mass m is suspended from a massless spring of natural length 90 cm with the spring constant = 10 Nm and causes the spring to extend k by 9.1 cm. Assuming the gravitational field = 9.8 ms2, calculate the value of strength g the mass on the spring. Give your answer in SI units.arrow_forwardA ball of mass m = 0.490 kg is dropped near the surface of the Earth.However, there exists an air resistance F = −βv, where β = 0.700 N · s/m. After a long time, the ballapproaches a speed v. What is this speed?arrow_forwardFor t < 0, an object of mass m experiences no force and moves in the positive x direction with a constant speed vi. Beginning at t = 0, when the object passes position x = 0, it experiences a net resistive force proportional to the square of its speed: net = −mkv2î, where k is a constant. The speed of the object after t = 0 is given by v = vi/(1 + kvit). (a) Find the position x of the object as a function of time. (Use the following as necessary: k, m, t, and vi.)x(t) = (b) Find the object's velocity as a function of position. (Use the following as necessary: k, m, t, vi, and x.) v(t)=arrow_forward
- An object starts from rest at the origin and moves along the x axis subject to the force shown in the figure below. If the mass of the object is 37.0 kg, determine the speed of the object at the following positions. Each unit along the position axis is 2.00 m and each unit along the force axis is 3.00 N. (a) x = A (b) x = B (c) x = Carrow_forwardThe IKAROS spacecraft, launched in 2010, was designed to test the feasibility of solar sails for spacecraft propulsion. These large, ultralight sails are pushed on by the force of light from the sun, so the spacecraft doesn’t need to carry any fuel. The force on IKAROS’s sails was measured to be 1.12 mN. If this were the only force acting on the 290 kg spacecraft, by how much would its speed increase after 6 months of flight?arrow_forwardu = 1.66 x 10-27 kg; v = 1.050x107 m/s. (in J) A uranium-238 nucleus undergoes a radioactive decay, The masses are approximately 238, 234 and 4 u, where u = the atomic mass unit. The U nucleus is initially at rest. Suppose the He nucleus has speed v. Then what is the kinetic energy of the Th nucleus? Parameters: A: 4.004x10-15 B: 5.006x10-15 C: 6.257x10-15 OC: 6.257x10-15 Submit Answer Tries 0/12 238 U Post Discussion → 234Th + 4He. D: 7.821x10-15 D: 7.821x10-15 OE: 9.776x10-15 F: 1.222x10-14 G: 1.528x10-14 H: 1.909×10-14 Send Feedbackarrow_forward
- : A body excutes S.H.M. of time period 8 sec. If its mass be 0.1 kg; its velocity 1 sec after it passes through its mean position be 4 m/s. Find its (i) total energy (ii) kinetic energy and (iii) potential energy.arrow_forwardIf an object with a mass of 2 kg changes it speed from 3.12 m/s to 7.96 m/s, what is its change in kinetic energy? Assume that the answer has proper SI Units.arrow_forwardThe only force acting on a 2.0-kg body moving along the x axis is given by Fx = 2x where force is measured in Newtons, N, and x is in meters. If the velocity of the object at x = 0 is +3.0 m/s, how fast is it moving at x = 2.0 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY