Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 2FTD
A ball bounces off a wall with the same speed it had before it hit the wall. Has its momentum changed? Has a force acted on the ball? Has a force acted on the wall? Relate your answers to New-ton’s laws of motion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
During a collision with a wall, the velocity of a 0.200-kg ball changes from 20.0 m/s toward the wall to 12.0 m/s away from the wall. If the time the ball was in contact
with the wall was 60.0 ms, what was the magnitude of the average force applied to the ball?
O 167N
0400N
O 13.3 N
107 N
During a collision with a wall, the velocity of a 0.200-kg ball changes from 20.0 m/s toward
the wall to 12.0 m/s away from the wall. If the time the ball was in contact with the wall was
60.0 ms, what was the magnitude of the average force applied to the ball?
O 13.3 N
O 16.7 N
O 26.7 N
O 40.0 N
O 107 N
O none of the above
Q8.
In Figure Q8, the motor B is moving the crate A upward at a constant velocity
of v = 4.5 m/s. The coefficient of kinetic friction between the crate A and the
inclined surface is a = 0.2. Suddenly, the cable fails and the crate A slide
downward.
(a)
Draw the free body diagram of the crate A at BOTH moving upward
and sliding downward.
(b)
Using principle of impulse and momentum, determine the speed of the
crate A at 2 seconds after the cable failed.
Motor B
4.5 m/s
Crate A
FIGURE Q8
Chapter 4 Solutions
Essential University Physics (3rd Edition)
Ch. 4.2 - A curved barrier lies on a horizontal tabletop, as...Ch. 4.2 - A nonzero net force acts on an object. Which of...Ch. 4.4 - A popular childrens book explains the...Ch. 4.5 - For each of the following situations, would the...Ch. 4.6 - The figure shows two blocks with two forces acting...Ch. 4.6 - (1) Would the answer to (a) in Example 4.5 change...Ch. 4 - Distinguish the Aristotelian and Galilean/New...Ch. 4 - A ball bounces off a wall with the same speed it...Ch. 4 - We often use the term inertia to describe human...Ch. 4 - Does a body necessarily move in the direction of...
Ch. 4 - A truck crashes into a stalled car. A student...Ch. 4 - A barefoot astronaut kicks a ball, hard, across a...Ch. 4 - The surface gravity on Jupiters moon Io is...Ch. 4 - In paddling a canoe, you push water backward with...Ch. 4 - Is it possible for a nonzero net force to act on...Ch. 4 - As your plane accelerates down the runway, you...Ch. 4 - A driver tells passengers to buckle their...Ch. 4 - If you cut a spring in half, is the spring...Ch. 4 - As youre sitting on a chair, theres a...Ch. 4 - Section 4.2 Newtons First and Second Laws A subway...Ch. 4 - A 61-Mg railroad locomotive can exert a 0.12-MN...Ch. 4 - A small plane accelerates down the runway at 7.2...Ch. 4 - A car leaves the road traveling at 110 km/h and...Ch. 4 - By how much does the force required to stop a car...Ch. 4 - Kinesin is a motor protein responsible for moving...Ch. 4 - Starting from rest and undergoing constant...Ch. 4 - In an egg-dropping contest, a student encases an...Ch. 4 - In a front-end collision, a 1300-kg car with...Ch. 4 - Show that the units of acceleration can be written...Ch. 4 - Your spaceship crashes on one of the Suns planets....Ch. 4 - Your friend can barely lift a 35-kg concrete block...Ch. 4 - A cereal box says net weight 340 grams. Whats the...Ch. 4 - Youre a safely engineer for a bridge spanning the...Ch. 4 - The gravitational acceleration at the...Ch. 4 - A 50-kg parachutist descends at a steady 40 km/h....Ch. 4 - A 930-kg motorboat accelerates away from a dock at...Ch. 4 - An elevator accelerates downward at 2.4 m/s2. What...Ch. 4 - At 560 metric tons, the Airbus A-380 is the worlds...Ch. 4 - Youre an engineer working on Ares I, NASAs...Ch. 4 - You slop into an elevator, and it accelerates to a...Ch. 4 - What upward gravitational force does a 5600-kg...Ch. 4 - Your friends mass is 65 kg. If she jumps off a...Ch. 4 - What force is necessary to stretch a spring 48 cm,...Ch. 4 - A 35-N force is applied to a spring with spring...Ch. 4 - A spring with spring constant k = 340 N/m is used...Ch. 4 - A 1.25-kg object is moving in the x-direction at...Ch. 4 - An airplane encounters sudden turbulence, and you...Ch. 4 - A 74-kg tree surgeon rides a cherry picker lift to...Ch. 4 - A dancer executes a vertical jump during which the...Ch. 4 - Find expressions for the force needed to bring an...Ch. 4 - An elevator moves upward at 5.2 m/s. Whats its...Ch. 4 - A 2.50-kg object is moving along the x-axis at...Ch. 4 - Blocks of 1.0, 2.0, and 3.0 kg are lined up on a...Ch. 4 - A child pulls an 11-kg wagon with a horizontal...Ch. 4 - Biophysicists use an arrangement of laser beams...Ch. 4 - A force F is applied to a spring of spring...Ch. 4 - A 22(M)-kg airplane pulls two gliders, the first...Ch. 4 - A biologist is studying the growth of rats on the...Ch. 4 - An elastic towrope has spring constant 1300 N/m....Ch. 4 - A 2.0-kg mass and a 3.0-kg mass are on a...Ch. 4 - Youre an automotive engineer designing the crumple...Ch. 4 - Frogs tongues dart out to catch insects, with...Ch. 4 - Two large crates, with masses 640 kg and 490 kg,...Ch. 4 - What force do the blades of a 4300-kg helicopter...Ch. 4 - What engine thrust (force) is needed to accelerate...Ch. 4 - Your engineering firm is asked to specify the...Ch. 4 - With its fuel tanks half full, an F-35A jet...Ch. 4 - Two springs have the same unstretched length but...Ch. 4 - Although we usually write Newtons second law for...Ch. 4 - A railroad car is being pulled beneath a grain...Ch. 4 - A block 20% more massive than you hangs from a...Ch. 4 - Youre asked to calibrate a device used to measure...Ch. 4 - A spider of mass ms drapes a silk thread of...Ch. 4 - Figure 4.27 shows vertical accelerometer data from...Ch. 4 - A hockey stick is in contact with a 165-g puck for...Ch. 4 - After parachuting through the Martian atmosphere,...Ch. 4 - Your airplane is caught in a brief, violent...Ch. 4 - Youre assessing the Engineered Material Arresting...Ch. 4 - Two masses are joined by a massless string. A 30-N...Ch. 4 - A mass M hangs from a uniform rope of length L and...Ch. 4 - Jerk is the rate of change of acceleration, and...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...
Additional Science Textbook Solutions
Find more solutions based on key concepts
7. (II) (a) A grinding wheel 0.35 m in diameter rotates at 2200 rpm. Calculate its angular velocity in rad/s. (...
Physics: Principles with Applications
* After landing from your skydiving experience, you are so excited that you throw your helmet upward. The helme...
College Physics
Does it ever make sense to say that one object is twice as hot as another? Does it matter whether one is referr...
An Introduction to Thermal Physics
The angle through which the reflected ray rotated.
Physics (5th Edition)
What is the voltage across the open switch in Figure 21.43?
College Physics
Which is hotter, the piece of mantle material at Position A or the piece of mantle material at Position D? Expl...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 57.0-g tennis ball is traveling straight at a player at 21.0 m/s. The player volleys the ball straight back at 25.0 m/s. If the ball remains in contact with the racket for 0.060 s, what average force acts on the ball? (a) 22.6 N (b) 32.5 N (c) 43.7 N (d) 72.1 N (e) 102 Narrow_forwardThis is a symbolic version of Problem 23. A girl of mass mG is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vGP to the right relative to the plank. (The subscript GP denotes the girl relative to plank.) (a) What is the velocity vPI of the plank relative to the surface of the ice? (b) What is the girls velocity vGI relative to the ice surface?arrow_forwardA model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is the average exhaust speed of the engine? (b) This engine is placed in a rocket body of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest in outer space by an astronaut on a spacewalk? Assume the fuel burns at a constant rate.arrow_forward
- A 57.0-g tennis ball is traveling straight at a player at 21.0 m/s. The player volleys the ball straight back at 25.0 m/s. If the ball remains in contact with the racket for 0.060 0 s, what average force acts on the ball? (a) 22.6 N (b) 32.5 N (c) 43.7 N (d) 72.1 N (e) 102 Narrow_forwardA ball of mass 250 g is thrown with an initial velocity of 25 m/s at an angle of 30 with the horizontal direction. Ignore air resistance. What is the momentum of the ball after 0.2 s? (Do this problem by finding the components of the momentum first, and then constructing the magnitude and direction of the momentum vector from the components.)arrow_forwardA bullet with a mass of 0.01 kg is tired horizontally into a block of wood hanging on a string. The bullet sticks in the wood and causes it to swing upward to a height of 0.1 m. If the mass of the wood block is 2 kg, what was the initial speed of the bullet?arrow_forward
- Two figure skaters are coasting in the same direction, with the leading skater moving at 5.5 m/s and the trailing skating moving at 6.2 m/s. When the trailing skater catches up with the leading skater, he picks her up without applying any horizontal forces on his skates. If the trailing skater is 50 heavier than the 50-kg leading skater, what is their speed after he picks her up?arrow_forwardThe kinetic energy of an object is increased by a factor of 4. By what factor is the magnitude of its momentum changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1arrow_forwardA 2.00 1O3-kg car moving cast at 10.0 m/s collides with a 3.00 103-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 40.0 north of east and a speed of 5.22 m/s. Find the speed and direction of the 3.00 103-kg car before the collision.arrow_forward
- There is a compressed spring between two laboratory carts of masses m1 = 105 g and m2 = 212 g. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity vi=2.035i m/s in the positive x direction (Fig. 10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart system? b. Find the velocity of cart 2. FIGURE P10.40 Problems 40 and 41.arrow_forward(a) What is the mass of a large ship that has a momentum of 1.60109kgm/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship's momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.arrow_forwardFigure P9.59a shows an overhead view of the configuration of two pucks of mass In on frictionless ice. The pucks are tied together with a string of length 1' and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance 4 and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d, e, and in? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY