Materials Science and Engineering Properties, SI Edition
Materials Science and Engineering Properties, SI Edition
1st Edition
ISBN: 9781305178175
Author: GILMORE, Charles
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 4.20P
To determine

The activation enthalpy and pre-exponential constant for the diffusion of oxygen (O18) into ZnO.

Expert Solution & Answer
Check Mark

Answer to Problem 4.20P

The activation enthalpy is 3.83×105J/moleofOatoms and the pre exponential constant is 0.40×103m2/s.

Explanation of Solution

Formula used:

The diffusion coefficient of point 1 is given by,

D0ZnO1=D0ZnO0exp(ΔH D 0ZnO kT1)   ....... (I)

Here, D0Zn01 is the diffusion coefficient of point 1, D0ZnO is the pre-exponential constant for oxygen diffusion into ZnO, k is the Boltzmann’s constant, T1 is the temperature at point 1 and ΔHD0ZnO is the activation enthalpy for oxygen into ZnO.

The diffusion coefficient of point 2 is given by,

D0ZnO2=D0ZnO0exp(ΔH D 0ZnO kT2)   ....... (II)

Here, D0Zn02 is the diffusion coefficient of point 1 and T2 is the temperature at point 2.

The ratio of diffusion coefficient of points 1 and 2 is given by,

D 0 ZnO 1 D 0 ZnO 2 =D 0 ZnO 0 exp( Δ H D 0ZnO k T 1 )D 0 ZnO 0 exp( Δ H D 0ZnO k T 2 )=exp( Δ H D 0ZnO k T 1 )exp( Δ H D 0ZnO k T 2 )=exp[( Δ H D 0ZnO k)( 1 T 1 1 T 2 )]   ....... (III)

Calculation:

The activation enthalpy is calculated as,

Substitute 1×1012cm2/s for D0ZnO1, 1×1018cm2/s for D0ZnO2, 8.62×105eV/atomK for k, 1587K for T1 and 1075K for T2 in equation (III).

1× 10 12 cm 2/s1× 10 18 cm 2/s=exp[( Δ H D 0ZnO 8.62× 10 5 eV/ atom K)( 1 1587K 1 1075K)]106=exp[ΔH D 0ZnO(3.48 atom/ eV)]ln( 106)=ΔHD 0ZnO(3.48atom/eV)ΔHD 0ZnO=ln( 10 6 )3.48atom/eV

Solve further,

ΔHD 0ZnO=13.823.48atom/eV=(3.97eV/atom× 96.521× 10 3 J/ moleofOatoms 1 eV/ atom )=3.83×105J/moleofOatoms

The diffusion coefficient is calculated as,

Substitute 1×1012cm2/s for D0ZnO1, 8.62×105eV/atomK for k, 1587K for T1 and 3.97eV/atom for ΔHD0ZnO in equation (I).

1×1012cm2/s=D0 ZnO0exp( 3.97 eV/ atom ( 8.62× 10 5 eV/ atom K )( 1587K ))D0 ZnO0=( 1× 10 12 cm 2 /s × 10 4 m 2 1 cm 2 )exp( 29.02)=1× 10 16 m 2/s2.32× 10 13=0.40×103m2/s

Conclusion:

Therefore, the activation enthalpy is 3.83×105J/moleofOatoms and the pre exponential constant is 0.40×103m2/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Locate the centroid of the volume of the solid shown where a hemesphire of radius r is mounted on top of a right circular cylinder of the same radius and altitude h
A square high-density polyethylene [a = 158 × 10-6/°C] plate has a width of 295 mm. A 177 mm diameter circular hole is located at the center of the plate. If the temperature of the plate increases by 45°C, determine: (a) the change in width of the plate. (b) the change in diameter of the hole. Answer: (a) Aw= (b) Ad = i i mm mm
Q1// In an attempt to understand the mechanism of the depolarization process in a fuel cell, an electro-kinetic model for mixed oxygen-methanol current on platinum was developed in the laboratory at FAMU. A very simplified model of the reaction developed suggests a functional relation in an integral form. To find the time required for 50% of the oxygen to be consumed, the time, T is given by: -3.5 6.87X T = G -)dx √X² +4 Use Simpson's 3/8 multiple segment rule with 6 segments to find the time required for 50% of the oxygen to be consumed.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning