EBK CHEMISTRY: ATOMS FIRST
EBK CHEMISTRY: ATOMS FIRST
3rd Edition
ISBN: 8220103675505
Author: Burdge
Publisher: YUZU
bartleby

Videos

Question
Book Icon
Chapter 4, Problem 4.18QP

(a)

Interpretation Introduction

Interpretation: For the given atomic number, the ground-state electronic configuration has to be written.

Concept Introduction:

  • Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
  • Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
  • Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d.
  • The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.

To write the ground-state electronic configuration of element with atomic number 10

(b)

Interpretation Introduction

Interpretation: For the given atomic number, the ground-state electronic configuration has to be written.

Concept Introduction:

  • Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
  • Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
  • Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d
  • The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.

To write the ground-state electronic configuration of element with atomic number 22

(c)

Interpretation Introduction

Interpretation: For the given atomic number, the ground-state electronic configuration has to be written.

Concept Introduction:

  • Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
  • Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
  • Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d
  • The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.

To write the electronic configuration of element with atomic number 28

(d)

Interpretation Introduction

Interpretation: For the given atomic number, the ground-state electronic configuration has to be written.

Concept Introduction:

  • Pauli Exclusion Principle: No two electrons having the same spin can occupy the same orbital. To occupy the same orbital, two electrons must have opposite spins.
  • Hund’s rule: When electrons occupy orbital, one electron enters each orbital until all the orbitals contain one electron. When the orbitals are singly filled, all the electrons have same spin where as in the doubly filled orbitals, electrons have opposite spin.
  • Aufbau’s Principle: The electrons in an atom fill the lowest energy levels in order of increasing energy. The order in which the electrons should be filled is 1s,2s,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d
  • The maximum number of electrons that can be placed in a subshell is given by 2(2l+1). This gives 2,6,10 and 14 electrons for the sub shells of s, p, d, f respectively.

To write the ground-state electronic configuration of element with atomic number 35

Blurred answer
Students have asked these similar questions
2. (a) Determine the mass number of a nucleus whose radius is approximately equal to two-thirds the radius of 2Ra. (b) Identify the element. (c) Are any other answers possible? Explain. 88
Consider the following information about three atoms: (a) How are they similar to one another? (b) How do they differ from one another? (c) What are the members of such a group of atoms called? (d) Using the planetary model, draw the atomic configuration of 126C showing the relative position and numbers of its subatomic particles.
1. Using the various group classifications from the periodic table, assign all appropriate labels to each of the following elements. Each element will have multiple (2 or more) answers. (a) Silver (b) Tennessine (c) Samarium (d) Antimony 2. Calculate the numbers of each type of nucleon and the number of electrons in each of the following species. (a) neodymium-149 (b) tantalum-179 (c) sellenium-79 dianion (d) krypton-85 trication 3. Write the ground-state electron configuration for the following atoms or ions. Use core notation in your electron configurations at your own discretion. (a) As (b) Au (c) Ce (d) Zn2− (e) Po4+ 4. Write an appropriate set of four quantum numbers (n, l, ms & ms) that could be representative of a valence electron in each of the following atoms or ions. (a) Bi (b) Sr (c) Mo (d) Ru2+ (e) Eu 5. In theory, there are an infinite number of energy levels and atomic orbital types that we can define using the solutions to the Schrödinger…

Chapter 4 Solutions

EBK CHEMISTRY: ATOMS FIRST

Ch. 4.2 - Prob. 2PPCCh. 4.2 - Prob. 4.2.1SRCh. 4.2 - Prob. 4.2.2SRCh. 4.4 - Referring only to a periodic table, arrange the...Ch. 4.4 - Prob. 3PPACh. 4.4 - Prob. 3PPBCh. 4.4 - Prob. 3PPCCh. 4.4 - Prob. 4.4WECh. 4.4 - Which element. Mg or Al, will have the higher...Ch. 4.4 - Explain why Rb has a lower IE1 than Sr, but Sr has...Ch. 4.4 - Imagine an arrangement of atomic orbitals in an...Ch. 4.4 - For each pair of elements, indicate which one you...Ch. 4.4 - Prob. 5PPACh. 4.4 - Explain why the EA1 for Ge is greater than the EA1...Ch. 4.4 - In the same hypothetical arrangement described in...Ch. 4.4 - For carbon and nitrogen, use the effective nuclear...Ch. 4.4 - Between which two charges is the attractive force...Ch. 4.4 - What must the distance be between charges of +2.25...Ch. 4.4 - Rank these pairs of charged objects in order of...Ch. 4.4 - Arrange the elements Ca, Sr, and Ba in order of...Ch. 4.4 - Prob. 4.4.2SRCh. 4.4 - For each of the following pairs of elements,...Ch. 4.4 - Prob. 4.4.4SRCh. 4.4 - Which pair of opposite charges has the greatest...Ch. 4.4 - What must the separation between charges of +2 and...Ch. 4.5 - Write electron configurations for the following...Ch. 4.5 - Write electron configurations for (a) O2, (b)...Ch. 4.5 - Prob. 7PPBCh. 4.5 - Prob. 7PPCCh. 4.5 - Prob. 4.8WECh. 4.5 - Prob. 8PPACh. 4.5 - Prob. 8PPBCh. 4.5 - Select the correct valence orbital diagram for the...Ch. 4.5 - What is the charge on a titanium ion that is...Ch. 4.5 - Prob. 4.5.2SRCh. 4.5 - Select the correct ground-state electron...Ch. 4.5 - Prob. 4.5.4SRCh. 4.5 - Which of the following ions is diamagnetic? (a)...Ch. 4.6 - Identify the isoelectronic series in the following...Ch. 4.6 - Arrange the following isoelectronic series in...Ch. 4.6 - List all the common ions that are isoelectronic...Ch. 4.6 - Prob. 9PPCCh. 4.6 - Prob. 4.6.1SRCh. 4.6 - Prob. 4.6.2SRCh. 4 - Prob. 4.1KSPCh. 4 - Prob. 4.2KSPCh. 4 - Prob. 4.3KSPCh. 4 - Prob. 4.4KSPCh. 4 - Briefly describe the significance of Mendeleevs...Ch. 4 - What is Moseleys contribution to the modem...Ch. 4 - Describe the general layout of a modern periodic...Ch. 4 - What is the most important relationship among...Ch. 4 - Prob. 4.5QPCh. 4 - Prob. 4.6QPCh. 4 - Prob. 4.7QPCh. 4 - Prob. 4.8QPCh. 4 - Without referring to a periodic table, write the...Ch. 4 - Prob. 4.10QPCh. 4 - Prob. 4.11QPCh. 4 - Prob. 4.12QPCh. 4 - For centuries, arsenic has been the poison of...Ch. 4 - In the periodic table, the element hydrogen is...Ch. 4 - An atom of a certain clement has 16 electrons....Ch. 4 - Prob. 4.16QPCh. 4 - Prob. 4.17QPCh. 4 - Prob. 4.18QPCh. 4 - Prob. 4.19QPCh. 4 - For each of the following ground-state electron...Ch. 4 - Determine what element is designated by each of...Ch. 4 - Prob. 4.22QPCh. 4 - Explain why there is a greater increase in...Ch. 4 - The election configuration of B is1s22s22p1. (a)...Ch. 4 - The election configuration of C is1s22s22p1. (a)...Ch. 4 - Prob. 4.26QPCh. 4 - Prob. 4.27QPCh. 4 - Equation 4.2 is used to calculate the force...Ch. 4 - Use the second period of the periodic table as an...Ch. 4 - Prob. 4.30QPCh. 4 - Prob. 4.31QPCh. 4 - Prob. 4.32QPCh. 4 - Prob. 4.33QPCh. 4 - Prob. 4.34QPCh. 4 - Prob. 4.35QPCh. 4 - Prob. 4.36QPCh. 4 - Prob. 4.37QPCh. 4 - Prob. 4.38QPCh. 4 - Prob. 4.39QPCh. 4 - Consider two ions with opposite charges separated...Ch. 4 - Prob. 4.41QPCh. 4 - Prob. 4.42QPCh. 4 - Prob. 4.43QPCh. 4 - On the basis of their positions in the periodic...Ch. 4 - Prob. 4.45QPCh. 4 - Prob. 4.46QPCh. 4 - Prob. 4.47QPCh. 4 - Prob. 4.48QPCh. 4 - Prob. 4.49QPCh. 4 - Prob. 4.50QPCh. 4 - Prob. 4.51QPCh. 4 - Prob. 4.52QPCh. 4 - In general, the first ionization energy increases...Ch. 4 - Prob. 4.54QPCh. 4 - Prob. 4.55QPCh. 4 - Prob. 4.56QPCh. 4 - Prob. 4.57QPCh. 4 - Prob. 4.58QPCh. 4 - Specify which of the following elements you would...Ch. 4 - Considering their electron affinities, do you...Ch. 4 - Prob. 4.61QPCh. 4 - Prob. 4.62QPCh. 4 - Prob. 4.63QPCh. 4 - Prob. 4.64QPCh. 4 - Prob. 4.65QPCh. 4 - Prob. 4.66QPCh. 4 - Prob. 4.67QPCh. 4 - Prob. 4.68QPCh. 4 - Prob. 4.69QPCh. 4 - Write the ground-state electron configurations of...Ch. 4 - Write the ground-state electron configurations of...Ch. 4 - Prob. 4.72QPCh. 4 - Prob. 4.73QPCh. 4 - Identify the ions, each with a net charge of +1,...Ch. 4 - Prob. 4.75QPCh. 4 - Prob. 4.76QPCh. 4 - Group the species that are isoelectronic: Be2+, F,...Ch. 4 - For each pair of ions, determine which will have...Ch. 4 - Rank the following ions in order of increasing...Ch. 4 - Prob. 4.80QPCh. 4 - Prob. 4.81QPCh. 4 - Prob. 4.82QPCh. 4 - A metal ion with a net +3 charge has five...Ch. 4 - Identify the atomic ground-state electron...Ch. 4 - Each of the following ground-state electron...Ch. 4 - Prob. 4.86QPCh. 4 - Prob. 4.87QPCh. 4 - Prob. 4.88QPCh. 4 - Indicate which one of the two species in each of...Ch. 4 - Prob. 4.90QPCh. 4 - Prob. 4.91QPCh. 4 - Prob. 4.92QPCh. 4 - Prob. 4.93QPCh. 4 - Prob. 4.94QPCh. 4 - Prob. 4.95QPCh. 4 - Prob. 4.96QPCh. 4 - Prob. 4.97QPCh. 4 - Prob. 4.98QPCh. 4 - Prob. 4.99QPCh. 4 - Prob. 4.100QPCh. 4 - Arrange the following species in isoelectronic...Ch. 4 - Prob. 4.102QPCh. 4 - Prob. 4.103QPCh. 4 - Prob. 4.104QPCh. 4 - Prob. 4.105QPCh. 4 - Prob. 4.106QPCh. 4 - Prob. 4.107QPCh. 4 - Prob. 4.108QPCh. 4 - Contrary to the generalized trend that atomic...Ch. 4 - Prob. 4.110QPCh. 4 - Prob. 4.111QPCh. 4 - Prob. 4.112QPCh. 4 - Prob. 4.113QPCh. 4 - Prob. 4.114QPCh. 4 - Prob. 4.115QPCh. 4 - Prob. 4.116QPCh. 4 - Prob. 4.117QPCh. 4 - Prob. 4.118QPCh. 4 - Prob. 4.119QPCh. 4 - The energy needed for the following process is...Ch. 4 - Using your knowledge of the periodic trends with...Ch. 4 - Prob. 4.122QPCh. 4 - Prob. 4.123QPCh. 4 - Prob. 4.124QPCh. 4 - Explain, in terms of their electron...Ch. 4 - Prob. 4.126QPCh. 4 - Prob. 4.127QPCh. 4 - This graph charts the first six ionization...Ch. 4 - Prob. 4.129QPCh. 4 - Prob. 4.130QPCh. 4 - Prob. 4.131QPCh. 4 - Prob. 4.132QPCh. 4 - Predict the atomic number and ground-state...Ch. 4 - Prob. 4.134QPCh. 4 - Prob. 4.135QPCh. 4 - Prob. 4.136QPCh. 4 - The first six ionizations of a gaseous atom can be...Ch. 4 - Prob. 4.138QPCh. 4 - Prob. 4.139QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Periodic Properties of Elements | Chemistry | IIT-JEE | NEET | CBSE | Misostudy; Author: Misostudy;https://www.youtube.com/watch?v=L26rRWz4_AI;License: Standard YouTube License, CC-BY
Periodic Trends: Electronegativity, Ionization Energy, Atomic Radius - TUTOR HOTLINE; Author: Melissa Maribel;https://www.youtube.com/watch?v=0h8q1GIQ-H4;License: Standard YouTube License, CC-BY