
Differential Equations: An Introduction to Modern Methods and Applications
3rd Edition
ISBN: 9781118531778
Author: James R. Brannan, William E. Boyce
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3.6, Problem 16P
For each of the systems in Problem 13 through 20:
a) Find all of the critical points.
b) Use a computer, to draw a direction field and phase portrait for the system.
c) From the plots in part (b), describe how the trajectories behave in the vicinity of each critical point.
dxdt=−(x−y)(1−x−y), dydt=x(2+y)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
InThe Northern Lights are bright flashes of colored light between 50 and 200 miles above Earth.
Suppose a flash occurs 150 miles above Earth. What is the measure of arc BD, the portion of Earth
from which the flash is visible? (Earth’s radius is approximately 4000 miles.)
Ju
at
© Ju
370
= x (-
пье
zxp
= c² (2² 4 )
dx²
ахе
2
nze
dyz
t
nzp
Q/what type of partial differential equation (PDE)
are the following-
Q
Calculate the Fourier series for
f(x) = x
on
the interval -16≤x≤ T
Chapter 3 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Ch. 3.1 - Solving Linear Systems. In each of Problems 1...Ch. 3.1 - Solving Linear Systems. In each of Problems 1...Ch. 3.1 -
Solving Linear Systems. In each of Problems ...Ch. 3.1 - Solving Linear Systems. In each of Problems 1...Ch. 3.1 -
Solving Linear Systems. In each of Problems ...Ch. 3.1 - Solving Linear Systems. In each of Problems 1...Ch. 3.1 -
Solving Linear Systems. In each of Problems ...Ch. 3.1 -
Solving Linear Systems. In each of Problems ...Ch. 3.1 -
Solving Linear Systems. In each of Problems ...Ch. 3.1 - Solving Linear Systems. In each of Problems 1...
Ch. 3.1 - Solving Linear Systems. In each of Problems 1...Ch. 3.1 -
Solving Linear Systems. In each of Problems ...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 -
Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 - Eigenvalues and Eigenvectors. In each of Problems ...Ch. 3.1 -
In each of Problems through :
Find the...Ch. 3.1 -
In each of Problems through :
Find the...Ch. 3.1 - In each of Problems 33 through 36: Find the...Ch. 3.1 -
In each of Problems through :
Find the...Ch. 3.1 -
If , derive the result in Eq. for .
…...Ch. 3.1 - Show that =0 is an eigenvalue of the matrix A if...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Writing Systems in Matrix Form. In each of...Ch. 3.2 - Show that the functions and are solutions of...Ch. 3.2 - (a) Show that the functions x(t)=et(2cos2tsin2t)...Ch. 3.2 - Show that
is solution of the...Ch. 3.2 - (a) Show that x=et(2t1t1)+(6t+22t1) issolution of...Ch. 3.2 - Find the equilibrium solution, or critical point,...Ch. 3.2 - Prob. 14PCh. 3.2 - In each of Problems through :
Find the...Ch. 3.2 - In each of Problems through :
Find the...Ch. 3.2 - In each of Problems 15 through 20: (a) Find the...Ch. 3.2 - In each of Problems 15 through 20: (a) Find the...Ch. 3.2 - In each of Problems 15 through 20: (a) Find the...Ch. 3.2 - In each of Problems through :
Find the...Ch. 3.2 - Second Order Differential Equations.
In Problems...Ch. 3.2 - Second Order Differential Equations.
In Problems...Ch. 3.2 - Second Order Differential Equations. In Problems...Ch. 3.2 - Second Order Differential Equations.
In Problems...Ch. 3.2 - In each of Problems 25 and 26, transform the given...Ch. 3.2 - In each of Problems 25 and 26, transform the given...Ch. 3.2 - Applications. Electric Circuits. The theory of...Ch. 3.2 - Applications. Electric Circuits. The theory of...Ch. 3.2 - Applications.
Electric Circuits. The theory of...Ch. 3.2 - Mixing Problems.
Each of the tank shown in...Ch. 3.2 - Consider two interconnected tanks similar to those...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - General Solutions of Systems. In each of problems...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - In each of problems 13 through 16, solve the given...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Phase Portraits and Component Plots. In each of...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems through...Ch. 3.3 - Second order Equations. For Problems 25 through...Ch. 3.3 - Obtaining exact, or approximate, expressions for...Ch. 3.3 - Electric Circuits. Problem 32 and 33 are concerned...Ch. 3.3 - Electric Circuits. Problem and are concerned...Ch. 3.3 - Dependence on a Parameter. Consider the system...Ch. 3.4 - General Solutions of Systems. In each of Problems...Ch. 3.4 - General Solutions of Systems. In each of Problems ...Ch. 3.4 - General Solutions of Systems. In each of Problems...Ch. 3.4 - General Solutions of Systems. In each of Problems ...Ch. 3.4 - General Solutions of Systems. In each of Problems...Ch. 3.4 - General Solutions of Systems. In each of Problems ...Ch. 3.4 - In each of Problems through, find the solution of...Ch. 3.4 - In each of Problems through, find the solution of...Ch. 3.4 - In each of Problems 7 through 10, find the...Ch. 3.4 - In each of Problems through, find the solution of...Ch. 3.4 - Phase Portraits and component Plots. In each of...Ch. 3.4 - Phase Portraits and component Plots. In each of...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems ...Ch. 3.4 - Dependence on a Parameter. In each of Problems 13...Ch. 3.4 - Dependence on a Parameter. In each of Problems 13...Ch. 3.4 - Dependence on a Parameter. In each of Problems 13...Ch. 3.4 - Applications.
Consider the electric circuit shown...Ch. 3.4 - Applications.
The electric circuit shown in...Ch. 3.4 - Applications.
In this problem, we indicate how to...Ch. 3.5 - General Solution and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - General Solutions and Phase Portraits. In each of...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7through 12, find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - In each of Problems 7 through , find the solution...Ch. 3.5 - Consider again the electric circuit in Problem 22...Ch. 3.5 - Trace Determinant Plane. Show that the solution of...Ch. 3.5 - Consider the linear system , where and are real...Ch. 3.5 - Continuing Problem 15, Show that the critical...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem 1 through 6: a)...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem 1 through 6: a)...Ch. 3.6 - For each of the systems in Problem 7 through 12:...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem 13 through 20:...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem 13 through 20:...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem through :
Find...Ch. 3.6 - For each of the systems in Problem 13 through 20:...Ch. 3.6 -
Consider the system in Example . Draw a component...Ch. 3.6 - In this problem we indicate how to find the...Ch. 3.6 - Prob. 23PCh. 3.6 - An asymptotically stable limit cycle is a closed...Ch. 3.6 - A model for the population, x and y of two...Ch. 3.P1 -
Assume that all the rate constants in , are...Ch. 3.P1 - Estimating Eigenvalues and Eigenvectors of from...Ch. 3.P1 - Computing the Entries of from Its Eigenvalues and...Ch. 3.P1 - Given estimates Kij of the entries of K and...Ch. 3.P1 - Table 3.P.1 lists drug concentration measurements...Ch. 3.P2 - If represents the amount of drug (milligrams) in...Ch. 3.P2 - Prob. 2PCh. 3.P2 - Assuming that and , use the parameter values...Ch. 3.P2 - If a dosage is missed, explain through the...Ch. 3.P2 - Suppose the drug can be packaged in a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Water in a hemispherical bowl A hemispherical bowl of radius 5 cm is filled with water to within 3 cm of the to...
University Calculus: Early Transcendentals (4th Edition)
A categorical variable has three categories, with the following frequencies of occurrence: a. Compute the perce...
Basic Business Statistics, Student Value Edition
Sampling Method. In Exercises 9-12, determine whether the sampling method appears to be sound or is flawed.
9. ...
Elementary Statistics
Using the Empirical Rule In Exercises 29–34, use the Empirical Rule.
34. The monthly utility bills for eight ho...
Elementary Statistics: Picturing the World (7th Edition)
Derivatives of inverse sine Evaluate the derivatives of the following functions. 10. f(x) = sin1 (ln x)
Calculus: Early Transcendentals (2nd Edition)
Explore! Exercises 9 and 10 provide two data sets front “Graphs in Statistical Analysis,” by F J. Anscombe, the...
Elementary Statistics (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- BUSINESS DISCUSSarrow_forwarda -> f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem) Muslim_mathsarrow_forwardUse Green's Theorem to evaluate F. dr, where F = (√+4y, 2x + √√) and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to (0,0).arrow_forward
- When a tennis player serves, he gets two chances to serve in bounds. If he fails to do so twice, he loses the point. If he attempts to serve an ace, he serves in bounds with probability 3/8.If he serves a lob, he serves in bounds with probability 7/8. If he serves an ace in bounds, he wins the point with probability 2/3. With an in-bounds lob, he wins the point with probability 1/3. If the cost is '+1' for each point lost and '-1' for each point won, the problem is to determine the optimal serving strategy to minimize the (long-run)expected average cost per point. (Hint: Let state 0 denote point over,two serves to go on next point; and let state 1 denote one serve left. (1). Formulate this problem as a Markov decision process by identifying the states and decisions and then finding the Cik. (2). Draw the corresponding state action diagram. (3). List all possible (stationary deterministic) policies. (4). For each policy, find the transition matrix and write an expression for the…arrow_forwardDuring each time period, a potential customer arrives at a restaurant with probability 1/2. If there are already two people at the restaurant (including the one being served), the potential customer leaves the restaurant immediately and never returns. However, if there is one person or less, he enters the restaurant and becomes an actual customer. The manager has two types of service configurations available. At the beginning of each period, a decision must be made on which configuration to use. If she uses her "slow" configuration at a cost of $3 and any customers are present during the period, one customer will be served and leave with probability 3/5. If she uses her "fast" configuration at a cost of $9 and any customers are present during the period, one customer will be served and leave with probability 4/5. The probability of more than one customer arriving or more than one customer being served in a period is zero. A profit of $50 is earned when a customer is served. The manager…arrow_forwardEvery Saturday night a man plays poker at his home with the same group of friends. If he provides refreshments for the group (at an expected cost of $14) on any given Saturday night, the group will begin the following Saturday night in a good mood with probability 7/8 and in a bad mood with probability 1/8. However, if he fail to provide refreshments, the group will begin the following Saturday night in a good mood with probability 1/8 and in a bad mood with probability 7/8 regardless of their mood this Saturday. Furthermore, if the group begins the night in a bad mood and then he fails to provide refreshments, the group will gang up on him so that he incurs expected poker losses of $75. Under other circumstances he averages no gain or loss on his poker play. The man wishes to find the policy regarding when to provide refreshments that will minimize his (long-run) expected average cost per week. (1). Formulate this problem as a Markov decision process by identifying the states and…arrow_forward
- This year Amanda decides to invest in two different no-load mutual funds: the G Fund or the L Mutual Fund. At the end of each year, she liquidates her holdings, takes her profits, and then reinvests. The yearly profits of the mutual funds depend on where the market stood at the end of the preceding year. Recently the market has been oscillating around level 2 from one year end to the next, according to the probabilities given in the following transition matrix : L1 L2 L3 L1 0.2 0.4 0.4 L2 0.1 0.4 0.5 L3 0.3 0.3 0.4 Each year that the market moves up (down) 1 level, the G Fund has profits (losses) of $20k, while the L Fund has profits (losses) of $10k. If the market moves up (down) 2 level in a year, the G Fund has profits (losses) of $50k, while the L Fund has profits (losses) of only $20k. If the market does not change, there is no profit or loss for either fund. Amanda wishes to determine her optimal investment policy in order to maximize her (long-run) expected average profit per…arrow_forwardEvaluate F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line π 1 1 segment starting at the point (8, ' and ending at the point (3, 2 3'6arrow_forwardSolve this questions pleasearrow_forward
- Find all positive integers n such that n.2n +1 is a square.arrow_forwardA researcher wishes to estimate, with 90% confidence, the population proportion of adults who support labeling legislation for genetically modified organisms (GMOs). Her estimate must be accurate within 4% of the true proportion. (a) No preliminary estimate is available. Find the minimum sample size needed. (b) Find the minimum sample size needed, using a prior study that found that 65% of the respondents said they support labeling legislation for GMOs. (c) Compare the results from parts (a) and (b). ... (a) What is the minimum sample size needed assuming that no prior information is available? n = (Round up to the nearest whole number as needed.)arrow_forwardThe table available below shows the costs per mile (in cents) for a sample of automobiles. At a = 0.05, can you conclude that at least one mean cost per mile is different from the others? Click on the icon to view the data table. Let Hss, HMS, HLS, Hsuv and Hмy represent the mean costs per mile for small sedans, medium sedans, large sedans, SUV 4WDs, and minivans respectively. What are the hypotheses for this test? OA. Ho: Not all the means are equal. Ha Hss HMS HLS HSUV HMV B. Ho Hss HMS HLS HSUV = μMV Ha: Hss *HMS *HLS*HSUV * HMV C. Ho Hss HMS HLS HSUV =μMV = = H: Not all the means are equal. D. Ho Hss HMS HLS HSUV HMV Ha Hss HMS HLS =HSUV = HMVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY