An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
Question
Book Icon
Chapter 3.3, Problem 20P
To determine

The energy, magnetization, and entropy of the system and along with the method experimenters have to do to attain 99% of the maximum possible magnetization.

Blurred answer
Students have asked these similar questions
Consider an ideal two-state electronic paramagnet such as DPPH,with µ = µB. In the experiment described above, the magnetic field strength was 2.06 T and the minimum temperature was 2.2 K. Calculate the energy, magnetization, and entropy of this system, expressing each quantity as a fraction of its maximum possible value. What would the experimenters have had to do to attain 99% of the maximum possible magnetization?
The Einstein model for a solid assumes the system consists of 3N independent simple harmonic oscillators with frequencies &. Within these assumptions, the heat capacity at constant volume as: Cv=3Nk() (-1)² ² Complete the table for the molar heat capacity at various temperatures under either the Einstein model or high-temperature limit. You might like to use the Wolfram Alpha calculator to do the numerical calculations more easily. Use k-0.695 cm /K. High temperature limit value of molar heat capacity of metal is T 1 K 10 K 50 K -1 Einstein, = 100 cm Einstein, : = 500 cm 1.4021 3.8991 100 K 500 K 2.434E-4 1000 K 6.1499 2434E-4 kJ/mol.
Show that the entropy of a two-state paramagnet, expressed asa function of temperature, is S = Nk [ln(2coshx) -x tanh x], where x = µB/kT.Check that this formula has the expected behavior as T → 0 and T  → ∞ .

Chapter 3 Solutions

An Introduction to Thermal Physics

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning