Integrated Science
7th Edition
ISBN: 9780077862602
Author: Tillery, Bill W.
Publisher: Mcgraw-hill,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.1, Problem 1SC
The metric unit of a joule (J) is a unit of
- a. potential energy.
- b. work.
- c. kinetic energy.
- d. Any of the above is correct.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Integrated Science
Ch. 3.1 - The metric unit of a joule (J) is a unit of a....Ch. 3.1 - Prob. 2SCCh. 3.1 - Prob. 3SCCh. 3.1 - About how many watts are equivalent to 1...Ch. 3.1 - A kilowatt-hour is a unit of a. power. b. work. c....Ch. 3.2 - The potential energy of a book on a shelf,...Ch. 3.2 - Prob. 7SCCh. 3.2 - Prob. 8SCCh. 3.3 - Prob. 9SCCh. 3.3 - Prob. 10SC
Ch. 3.4 - The accounting device of a barrel of oil is...Ch. 3.4 - The most widely used source of energy today is a....Ch. 3 - How is work related to energy?Ch. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Prob. 16CQCh. 3 - Prob. 17CQCh. 3 - Prob. 18CQCh. 3 - Prob. 19CQCh. 3 - Prob. 20CQCh. 3 - Prob. 21CQCh. 3 - A force of 200 N is needed to push a table across...Ch. 3 - Prob. 2PEACh. 3 - Prob. 3PEACh. 3 - Prob. 4PEACh. 3 - Prob. 5PEACh. 3 - Prob. 6PEACh. 3 - Prob. 7PEACh. 3 - Prob. 8PEACh. 3 - Prob. 9PEACh. 3 - (a) How much work is done in moving a 2.0 kg book...Ch. 3 - Prob. 11PEACh. 3 - Prob. 12PEACh. 3 - Work of 1,200 J is done while pushing a crate...Ch. 3 - How much work is done by a hammer that exerts a...Ch. 3 - A 5.0 kg textbook is raised a distance of 30.0 cm...Ch. 3 - An electric hoist does 196,000 J of work in...Ch. 3 - What is the horsepower of a 1,500.0 kg car that...Ch. 3 - What is the kinetic energy of a 30.0 g bullet that...Ch. 3 - How much work will be done by a 30.0 g bullet...Ch. 3 - A 10.0 kg box is lifted 15 m above the ground by a...Ch. 3 - A force of 50.0 lb is used to push a box 10.0 ft...Ch. 3 - Prob. 10PEBCh. 3 - Prob. 11PEBCh. 3 - A 70.0 kg student runs up the stairs of a football...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Gregor Mendel never saw a gene, yet he concluded that some inherited factors were responsible for the patterns ...
Campbell Essential Biology (7th Edition)
2. Why is it that the range of resting blood pressures of humans is best represented by a bell-shaped curve co...
Human Biology: Concepts and Current Issues (8th Edition)
Why is it unlikely that two neighboring water molecules would be arranged like this?
Campbell Biology (11th Edition)
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
Give the IUPAC name for each compound.
Organic Chemistry
Describe the role and impact of microbes on the earth.
Microbiology Fundamentals: A Clinical Approach
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Chapter 7, the work-kinetic energy theorem, W = K, was introduced. This equation states that work done on a system appears as a change in kinetic energy. It is a special-case equation, valid if there are no changes in any other type of energy such as potential or internal. Give two or three examples in which work is done on a system but the change in energy of the system is not a change in kinetic energy.arrow_forward. A bicycle and rider going 10 m/s approach a hill. Their total mass is 80 kg. (a) What is their kinetic energy? (b) If the rider coasts up the hill without pedaling, how high above its starting level will the bicycle be when it finally rolls to a stop?arrow_forwardWhat is the difference between energy conservation and the law of conservation of energy? Give some examples of each.arrow_forward
- . The fastest that a human has run is about 12 m/s. (a) If a pole vaulter could run this fast and convert all of her kinetic energy into gravitational potential energy, how high would she go? (b) Compare this height with the world record in the pole vault.arrow_forwardWork is equal to the force times the ___ distance through which the force acts. (4.1)arrow_forwardGive an example of something think of as work in everyday circumstances that is not work in the scientific sense. Is energy transferred or changed in form in your example? If so, explain how this without doing work.arrow_forward
- The awe-inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high, with a mass of about 7109 kg. (The pyramid's dimensions are slightly different today due to quarrying and some sagging.) Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year. (a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height. (b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps (see Figure 7.45), bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 kcal/h. What does your answer imply about how much of their work went into block-lifting, versus how much work went into friction and lifting and lowering their own bodies? (c) Calculate the mass of food that had to be supplied each day, assuming that the average worker required 3600 kcal per day and that their diet was 5% protein, 60% carbohydrate, and 35% fat. (These proportions neglect the mass of bulk and non-digestible materials consumed.) Figure 7.45 Ancient pyramids were probably constructed using ramps as simple machines. (credit: Franck Monnier, Wikimedia Commons)arrow_forwardIntegrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?arrow_forwardThe kinetic energy of a system must always be positive or zero. Explain whether this is true for the potential energy of a system.arrow_forward
- Work is done on an object when it is ___. (4.1) (a) moved (b) stationary (c) acted on by a balanced force (d) none of the precedingarrow_forwardDescribe the energy transfers and transformations for a javelin, stating from the point at which an athlete picks up the javelin and ending when the javelin is stuck into the ground after being thrown.arrow_forwardConfirm the value given for the kinetic energy of an aircraft carrier in Table 7.1. You will need to look up the definition of a nautical mile (1knot=1nauticalmile/h) .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY