Integrated Science
7th Edition
ISBN: 9780077862602
Author: Tillery, Bill W.
Publisher: Mcgraw-hill,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 20CQ
To determine
The technological device that does not convert a form of energy to another.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Meteor Crater. About 50,000 years ago, a meteor crashed into the earth near present-day Flagstaff, Arizona. Measurements from 2005 estimate that this meteor had a mass of about kg (around 150,000 tons) and hit the ground at a speed of (a) How much kinetic energy did this meteor deliver to the ground? (b) How does this energy compare to the energy released by a 1.0-megaton nuclear bomb? (A megaton bomb releases the same amount of energy as a million tons of TNT, and 1.0 ton of TNT releases J of energy.
DETAILS
PREVIOUS ANSWERS
X J
OSCOLPHYS2016ACC 7.3.P.016.
MY NOTES
ASK YOUR TEACHER
PRACTICE ANOTHER
A hydroelectric power facility converts the gravitational potential energy of water behind a dam to electric energy. (For each answer, enter a number.)
(a) What is the gravitational potential energy (in J) relative to the generators of a lake of volume 71.0 km³ (mass = 7.10 x 1013 kg), given that the lake has an average height of 35.0 m above the
generators?
Do devices with efficiencies of less than 100% violate the law of conservation of energy? Explain. List four different forms or types of energy. Give one example of a conversion from each of these forms to another form.
Chapter 3 Solutions
Integrated Science
Ch. 3.1 - The metric unit of a joule (J) is a unit of a....Ch. 3.1 - Prob. 2SCCh. 3.1 - Prob. 3SCCh. 3.1 - About how many watts are equivalent to 1...Ch. 3.1 - A kilowatt-hour is a unit of a. power. b. work. c....Ch. 3.2 - The potential energy of a book on a shelf,...Ch. 3.2 - Prob. 7SCCh. 3.2 - Prob. 8SCCh. 3.3 - Prob. 9SCCh. 3.3 - Prob. 10SC
Ch. 3.4 - The accounting device of a barrel of oil is...Ch. 3.4 - The most widely used source of energy today is a....Ch. 3 - How is work related to energy?Ch. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Prob. 12CQCh. 3 - Prob. 13CQCh. 3 - Prob. 14CQCh. 3 - Prob. 15CQCh. 3 - Prob. 16CQCh. 3 - Prob. 17CQCh. 3 - Prob. 18CQCh. 3 - Prob. 19CQCh. 3 - Prob. 20CQCh. 3 - Prob. 21CQCh. 3 - A force of 200 N is needed to push a table across...Ch. 3 - Prob. 2PEACh. 3 - Prob. 3PEACh. 3 - Prob. 4PEACh. 3 - Prob. 5PEACh. 3 - Prob. 6PEACh. 3 - Prob. 7PEACh. 3 - Prob. 8PEACh. 3 - Prob. 9PEACh. 3 - (a) How much work is done in moving a 2.0 kg book...Ch. 3 - Prob. 11PEACh. 3 - Prob. 12PEACh. 3 - Work of 1,200 J is done while pushing a crate...Ch. 3 - How much work is done by a hammer that exerts a...Ch. 3 - A 5.0 kg textbook is raised a distance of 30.0 cm...Ch. 3 - An electric hoist does 196,000 J of work in...Ch. 3 - What is the horsepower of a 1,500.0 kg car that...Ch. 3 - What is the kinetic energy of a 30.0 g bullet that...Ch. 3 - How much work will be done by a 30.0 g bullet...Ch. 3 - A 10.0 kg box is lifted 15 m above the ground by a...Ch. 3 - A force of 50.0 lb is used to push a box 10.0 ft...Ch. 3 - Prob. 10PEBCh. 3 - Prob. 11PEBCh. 3 - A 70.0 kg student runs up the stairs of a football...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is energy transferred or changed in form in your example? If so, explain how this is accomplished without doing work.arrow_forwardConsider the energy transfers and transformations listed below in parts (a) through (e). For each part, (i) describe human-made devices designed to produce each of the energy transfers or transformations and, (ii) whenever possible, describe a natural process in which the energy transfer or transformation occurs. Give details to defend your choices, such as identifying the system and identifying other output energy if the device or natural process has limited efficiency. (a) Chemical potential energy transforms into internal energy. (b) Energy transferred by electrical transmission becomes gravitational potential energy. (c) Elastic potential energy transfers out of a system by heat. (d) Energy transferred by mechanical waves does work on a system. (e) Energy carried by electromagnetic waves becomes kinetic energy in a system.arrow_forwardWhat do we pay the electric company for, power or energy? In what units?arrow_forward
- Integrated Concepts A 105-kg basketball player crouches down 0.400 m while waiting to jump. After exerting a force on the floor through this 0.400 m, his feet leave the floor and his center of gravity rises 0.950 m above its normal standing erect position. (a) Using energy considerations, calculate his velocity when he leaves the floor. (b) What average force did he exert on the floor? (Do not neglect the force to support his weight as well as that to accelerate him.) (c) What was his power output during the acceleration phase?arrow_forwardIf the energy in fusion bombs were used to supply the energy needs of the world, how many of the 9-megaton variety would be needed for a year’s supply of energy (using data from Equation 8.7)? U(x)=12kx2=const.arrow_forwardIntegrated Concepts A 75.0-kg cross-country skier is climbing a 3.0° slope at a constant speed of 2.00 m/s and encounters air resistance of 25.0 N. Find his power output for work done against the gravitational force and air resistance. (b) What average force does he exert backward on the snow to accomplish this? (c) If he continues to exert this force and to experience the same air resistance when he reaches a level area, how long will it take him to reach a velocity of 10.0 m/s?arrow_forward
- Give an example of something think of as work in everyday circumstances that is not work in the scientific sense. Is energy transferred or changed in form in your example? If so, explain how this without doing work.arrow_forwardAnswer yes or no to each of the following questions. (a) Can an objectEarth system have kinetic energy and not gravitational potential energy? (b) Can it have gravitational potential energy and not kinetic energy? (c) Can it have both types of energy at the same moment? (d) Can it have neither?arrow_forwardExplorers in the jungle find an ancient monument in the shape of a large isosceles triangle as shown in Figure P9.25. The monument is made from tens of thousands of small stone blocks of density 3 800 kg/m3. The monument is 15.7 m high and 64.8 m wide at its base and is everywhere 3.60 m thick from front to back. Before the monument was built many years ago, all the stone blocks lay on the ground. How much work did laborers do on the blocks to put them in position while building the entire monument? Note: The gravitational potential energy of an objectEarth system is given by Ug = MgyCM, where M is the total mass of the object and yCM is the elevation of its center of mass above the chosen reference level.arrow_forward
- Integrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?arrow_forwardWhat average power is generated by a 70.0-kg mountain climber who climbs a summit of height 325 m in 95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 Warrow_forwardGive an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY