FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 9781259877766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 99P
The density of a liquid is to be determined by an old 1-cm-diameier cylindrical hydrometer whose division marks are completely wiped out. The hydrometer is first dropped in water, and the water level is marked. The hydrometer is then dropped into the other liquid, and it is observed that the mark for water has risen 0.3 cm above the liquid-air interface (Fig. P3-99). If the height of the original water mark is 12.3 cm. determine the density of the liquid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Here, a liquid's density is to be determined by a 1-cm diameter cylindrical hydrometer whose division marks are non visable. The hydrometer is first dropped in water, and the water level is marked. The hydrometer is then dropped into the 'liquid x', and it is observed that the mark for water has risen 0.85 cm above the liquid–air interface. In this case, the height of the originalwater mark is 12.7 cm. As such, how would I determine the density of the liquid?
The figure below shows a rectangular tank of dimensions ho = 2.5 m and b = 2 m is filled to the brim with a liquid of specific gravity 1.1 (tank is 1 m into plane of figure). The
tank is subjected to a horizontal acceleration ax, and 30% of the liquid spills over. Determine the difference in liquid pressures at the lower left-hand corner (Point E) and
lower right-hand corner of the tank (Point F).
PE-PF= 1. [15.70090597, 16.672095597
Free
surface
ho
Liquid
X
b
Liquid at rest
➡ho
kPa.
9 Free
surface
Liquid
b
ax
Under constant acceleration
i need the answer quickly
Chapter 3 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 3 - What is the difference between gage pressure and...Ch. 3 - A tinysteel cube is suspended in water by a...Ch. 3 - Explain why some people experience nose bleeding...Ch. 3 - Consider two identical fans, one at sea level and...Ch. 3 - Someone claims that the absolute pressure in a...Ch. 3 - Express Pascal’s law, and give a real-world...Ch. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - A vacuum gage connected to a chamber reads 25 kPa...Ch. 3 - The pressure at the exit of an air compressor is...Ch. 3 - A diver's watch resists an absolute pressure of...
Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - The pressure in a water line is 1500 kPa. What is...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - A 180-Ibm man has a total foot imprint area of 68...Ch. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - The piston of a vertical piston-cylinder device...Ch. 3 - The vacuum pressure of a condenser is given to be...Ch. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - Determine the pressure exerted on a diver at 15 m...Ch. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - The hydraulic lift in a car repair shop has an...Ch. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - There is water at a height of 1 m in the rube open...Ch. 3 - Prob. 53PCh. 3 - A simple experiment has long been used to...Ch. 3 - A multifluid container is connected to a U-tube....Ch. 3 - A hydraulic lift is to be used to lift a 2500 kg...Ch. 3 - On a day in which the local atmospheric pressure...Ch. 3 - A U-tube manometer is used to measure the pressure...Ch. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A cylindrical tank is folly filled with water...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - The bowl shown in the figure (the white volume) is...Ch. 3 - A triangular-shaped gate is hinged at point A, as...Ch. 3 - Gate AB ( 0.60.9m ) is located at the bottom of a...Ch. 3 - Find the force applied by support BC to the gate...Ch. 3 - A concrete block is attached to the sate as shown....Ch. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Prob. 93CPCh. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 95CPCh. 3 - Consider two identical spherical bails submerged...Ch. 3 - Prob. 97PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - The density of a liquid is to be determined by an...Ch. 3 - Prob. 100PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - One of the common procedures in fitness programs...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - A water tank is being towed by a truck on a level...Ch. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 111PCh. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 120PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A 4-m-diameter vertical cylindrical milk tank...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Two vertical and connected cylindrical tanks of...Ch. 3 - The U-tube shown the figure subjected to an...Ch. 3 - Prob. 131EPCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Determine the pressure exerted on the surface of a...Ch. 3 - A vertical, frictionless piston-cylinder device...Ch. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - The average atmospheric pressure on earth is...Ch. 3 - Prob. 137PCh. 3 - Prob. 139PCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - Prob. 142PCh. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 144PCh. 3 - An oil pipeline and a 1.3-m3 rigid air tank are...Ch. 3 - A 20-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 148PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 151PCh. 3 - Prob. 152EPCh. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 156PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - The density of a floating body can be determined...Ch. 3 - A raft is made using a number of logs with 25 cm...Ch. 3 - A prismatic timber is at equilibrium in a liquid,...Ch. 3 - The cylindrical lank containing water accelerates...Ch. 3 - A 30-cm-diameter. 100-cm-hish vertical cylindrical...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 168PCh. 3 - Determine the vertical force applied by water on...Ch. 3 - Prob. 170PCh. 3 - In order to keep the cone-shaped plus closed as...Ch. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - The atmospheric pressure in a location is measured...Ch. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 186PCh. 3 - Prob. 187PCh. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - Compare fee vortex with forced vortex according to...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For a liquid with the contact angle of 53.6 degrees and surface tension of 0.075 N/m, capillary rise is 2.50 m. What is the expected capillary rise in meters if the liquid is replaced with another with a contact angle of 12.7 degrees and a similar surface tension? (answer should be accurate to 2 decimal places) Answer:arrow_forwardP4-28 A layer of oil 6 cm thick covers a layer of water. A cylinder made of soft pine floats in this two-layer fluid, as shown. Using data on the figure, find the height, x, by which the cylinder protrudes from the fluid. 20 cm Air 14 cm Soft SG 075O pine SG 0.56 Waterarrow_forwardBottle was filled with water and a hole is punched in the bottle.When the bottle is closed, water does not come out of the hole. However, when the bottle is open, water comes out of the hole. Other information would be - Atmospheric pressure is 1 atm (101325 Pa) - Assume bottle is 20 cm and the hole is on the 10 cm above the bottom of the bottle (use it as reference level) Define the pressure(s) acting at the hole when the bottle is open and calculate total pressure. Define the pressure(s) acting at the hole when the bottle is closed and calculate total pressure. Using the results from part a and b, why does water come out when the bottle is open and why does not it come out when the bottle is closed?arrow_forward
- A 12.5 kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in 5.60 cm below the surface of the water. Scale a b (a) What are the magnitudes of the forces (in N) acting on the top and on the bottom of the block due to the s significant figures.) Frop N N Fbottom (b) What is the reading of the spring scale (in N)? N (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block. ( IIarrow_forwardif you have solved it before on another question pls dont post because i want to confirmarrow_forwardRound off at the final answer only (three decimal places)!arrow_forward
- The perpendicular dimension of the cylindrical surface abcde in the figure to the plane of the figure is 6 m, and the radius of the circular surfaces is R=2.5 m. According to this; a)Determine the horizontal and vertical components of the pressure force exerted by water on the cylindrical surface in abcde.(Fhorizontal?Fvertical?) b)Determine the vertical distance from the point of action of the horizontal component of the pressure force acting on the cylindrical surface of abcde to the point e, and the horizontal distance from the point of action of the vertical component of the pressure force to the line ace.(Fhorizontal?Fvertical?)arrow_forwardThe tank in Fig. has a 4-cm-diameter plug at the bottomon the right. All fl uids are at 20 ° C. The plug will pop out if thehydrostatic force on it is 25 N. For this condition, what willbe the reading h on the mercury manometer on the left side?arrow_forwardIf the absolute pressure at the interface between water andmercury in Fig. is 93 kPa, what, in lbf/ft 2 , is ( a ) thepressure at the surface and ( b ) the pressure at the bottom ofthe container?arrow_forward
- The pressure of the natural gas installation is as follows.As you can see, mercury (mercury), oil (oil) and water (water) fluidsIt is measured with a manometer. Open end of the manometer (X + 85)It is under the influence of kPa ambient pressure. The relative content of mercury and oil (relative to water)density (SG) and density of water (ρwater = 997 kg / m3) is known.Determine the absolute pressure in the installation (X=00)arrow_forwardThe open tank shown, which has a liquid with a specific gravity of S=5.7 as shown in the give figure, is accelerated upward at one g. what is the pressure at point 1(kpa)? 2 150 cm 190 mmarrow_forwardA vertical cylinder with crosssectional area A = 1 dm2 contains h1 = 25 cm of water at the bottom. The space above it is filled with the saturated vapour of the water, which is separated from the external space by a piston. The bottom of the piston is h2 = 75 cm above the water level. The density of water at this temperature is n = 2 times the density of saturated vapour. (a) If temperature is held constant, by how much should the piston be pushed down in order to decrease the volume of vapour to V = 4.5 dm3 ? (b) If temperature is held constant, by how much should the piston be pushed down in order to have the vapour condense completely?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY