The ground-state electron configuration of tellurium should be identified by using Aufbau principle. Concept Introduction: An orbital is an area of space in which electrons are orderly filled. The maximum capacity in any type of orbital is two electrons. An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest. It is subdivided into four orbitals such as s , p , d a n d f orbitals which depend upon the number of electrons present in the nucleus of a particular atom. There are three basic principles in which orbitals are filled by the electrons. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'. The electrons are arranged in various orbitals in the order of increasing energies. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs. The electron configuration is the allocation of electrons of an atom in atomic orbitals. Electronic configuration of a particular atom is written by following the three basic principles. To find: Identify the ground-state electron configuration of tellurium
The ground-state electron configuration of tellurium should be identified by using Aufbau principle. Concept Introduction: An orbital is an area of space in which electrons are orderly filled. The maximum capacity in any type of orbital is two electrons. An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest. It is subdivided into four orbitals such as s , p , d a n d f orbitals which depend upon the number of electrons present in the nucleus of a particular atom. There are three basic principles in which orbitals are filled by the electrons. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'. The electrons are arranged in various orbitals in the order of increasing energies. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs. The electron configuration is the allocation of electrons of an atom in atomic orbitals. Electronic configuration of a particular atom is written by following the three basic principles. To find: Identify the ground-state electron configuration of tellurium
Solution Summary: The author explains how the ground-state electron configuration of tellurium should be identified by using Aufbau principle.
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
Chapter 3, Problem 3.114QP
Interpretation Introduction
Interpretation:
The ground-state electron configuration of tellurium should be identified by using Aufbau principle.
Concept Introduction:
An orbital is an area of space in which electrons are orderly filled. The maximum capacity in any type of orbital is two electrons. An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest. It is subdivided into four orbitals such as s,p,dandf orbitals which depend upon the number of electrons present in the nucleus of a particular atom.
There are three basic principles in which orbitals are filled by the electrons.
1. Aufbau principle: In German, the word 'aufbau' means 'building up'. The electrons are arranged in various orbitals in the order of increasing energies.
2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.
The electron configuration is the allocation of electrons of an atom in atomic orbitals. Electronic configuration of a particular atom is written by following the three basic principles.
To find: Identify the ground-state electron configuration of tellurium
Draw the skeletal structure of the
alkane 4-ethyl-2, 2, 5, 5-
tetramethylnonane. How many
primary, secondary, tertiary, and
quantenary carbons does it have?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY