(a)
Interpretation:
The orbital which is lower in energy in many electron atoms should be identified in the given pairs of orbitals.
Concept Introduction:
Energy of an orbital in a many electron atom depends on both the values of principle quantum number (n) and
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
To find: Identify the orbital which is lower in energy in the given pair 2s, 2p orbitals of many electron atoms
Find the value of ‘n’
The principle quantum number (n) of the 2s, 2p orbitals is 2. Find the value of ‘l’
(b)
Interpretation:
The orbital which is lower in energy in many electron atoms should be identified in the given pairs of orbitals.
Concept Introduction:
Energy of an orbital in a many electron atom depends on both the values of principle quantum number (n) and angular momentum quantum number (l). For a given value of principle quantum number (n), the energy of orbital increases with increasing value of the angular momentum quantum number (l) in a many electron atom.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
To find: Identify the orbital which is lower in energy in the given pair 3p, 3d orbitals of many electron atoms
Find the value of ‘n’
The principle quantum number (n) of the 3p, 3d orbitals is 3. Find the value of ‘l’
(c)
Interpretation:
The orbital which is lower in energy in many electron atoms should be identified in the given pairs of orbitals.
Concept Introduction:
Energy of an orbital in a many electron atom depends on both the values of principle quantum number (n) and angular momentum quantum number (l). For a given value of principle quantum number (n), the energy of orbital increases with increasing value of the angular momentum quantum number (l) in a many electron atom.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
To find: Identify the orbital which is lower in energy in the given pair 3s, 4s orbitals of many electron atoms Find the value of ‘n’
The principle quantum number (n) of the 3s orbital is 3 whereas the principle quantum number (n) of the 4s orbital is 4. Hence 3s orbital is lower in energy than 4s orbital as the 3s orbital has the lower value of ‘n’ than 4s orbital. Find the value of ‘l’
(d)
Interpretation:
The orbital which is lower in energy in many electron atoms should be identified in the given pairs of orbitals.
Concept Introduction:
Energy of an orbital in a many electron atom depends on both the values of principle quantum number (n) and angular momentum quantum number (l). For a given value of principle quantum number (n), the energy of orbital increases with increasing value of the angular momentum quantum number (l) in a many electron atom.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
To find: Identify the orbital which is lower in energy in the given pair 4d, 5f orbitals of many electron atoms Find the value of ‘n’
The principle quantum number (n) of the 4d orbital is 4 whereas the principle quantum number (n) of the 5f orbital is 5. Hence 4d orbital is lower in energy than 5f orbital as the 4d orbital has the lower value of ‘n’ than 5f orbital. Find the value of ‘l’
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemistry: Atoms First
- • identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardPalladium, with an electron configuration of [Kr] 4d10, is an exception to the aufbau principle. Write the electron configuration of the 2+ cation of palladium. Does the fact that palladium is an exception influence the electron configuration of Pd2+?arrow_forwardIn what main group(s) of the periodic table do elements have the following number of half-filled p-orbitals in the outermost principal energy level? (a) 0 (b) 1(c) 2(d) 3arrow_forward
- What is the electron configuration of the Ba3+ ion? Suggest a reason why this ion is not normally found in nature.arrow_forwardFor the following pairs of orbitals, indicate which is lower in energy in a many-electron atom. (a) 3d or 4s (b) 4f or 3d (c) 2s or 2P d) 4f or 4darrow_forwardThe electron affinity of the lutetium atom (element 71) was measured using the technique of photoelectron spectroscopy with an infrared laser (the essay on p. 310 describes this instrumental method, using X rays). In this experiment, a beam of lutetium negative ions, Lu, was prepared and irradiated with a laser beam having a wavelength at 1064 nm. The energy supplied by a photon in this laser beam removes an electron from a negative ion, leaving the neutral atom. The energy needed to remove the electron from the negative ion to give the neutral atom (both in their ground states) is the electron affinity of lutetium. Any excess energy of the photon shows up as kinetic energy of the emitted electron. If the emitted electron in this experiment has a kinetic energy of 0.825 eV, what is the electron affinity of lutetium?arrow_forward
- In one area of Australia, the cattle did not thrive despite the presence of suitable forage. An investigation showed the cause to be the absence of sufficient cobalt in the soil. Cobalt forms cations in two oxidation states, Co2 and Co3+. Write the electron structure of the two cations.arrow_forwardWhat are quantum numbers? What information do we get from the quantum numbers n, l, and ml? We define a spin quantum number (ms), but do we know that an electron literally spins?arrow_forwardConsider the eight most abundant elements in the human body, as outlined in Exercise 156. Excluding hydrogen, which of these elements would have the smallest size? largest size? smallest first ionization energy? largest first ionization energy?arrow_forward
- What is the radius, in angstroms, of the orbital of an electron with n = 8 in a hydrogen atom?arrow_forwardSuppose that the spin quantum number did not exist, and therefore only one electron could occupy each orbital of a many-electron atom. Give the atomic numbers of the first three noble-gas atoms in this case.arrow_forwardArrange the following groups of atoms in order of increasing size. a. Rb, Na, Be b. Sr, Se, Ne c. Fe, P, Oarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning