Control Systems Engineering
Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 29P

A single-pole oil cylinder valve contains a spool that regulates hydraulic pressure, which is then applied to a piston that drives a load. The transfer function relating piston displacement, Xp(s) to spool displacement from equilibrium, Xv(s), is given by (Qu, 2010):

G s = X p s X v s = K q ω h 2 / A 1 s s 2 + 2 ς ω h s + ω h 2

where A1=effective area of a the valve’s chamber, Kq=rate of change of the load flow rate with a change in displacement, and ω h = the natural frequency of the hydraulic system. Find the state-space representation of the system, where the state variables are the phase variables associated with the piston.

Blurred answer
Students have asked these similar questions
X Determine: k (i) (ii) с ww m E Figure Q1 Figure Q1 shows a forced spring-mass system with damping, where mass m = 1 kg, spring constant k = 0.2 N/m, and damping coefficient c = 0.3 N-s/m. (a) This forced spring-mass system with damping can be described by the following differential equation: F d²x(t) c dx(t) k dt² m dt + -+-x(t)==F(t) m m Laplace Transfer Function of this system, This system's steady state gain, damping ratio and natural frequency.
1. A spring mass system serving as a shock absorber under a car's suspension, supports the M 1000 kg mass of the car. For this shock absorber, k = 1 × 10°N /m and c = 2 × 10° N s/m. The car drives over a corrugated road with force %3| F = 2× 10° sin(@t) N . Use your notes to model the second order differential equation suited to this application. Simplify the equation with the coefficient of x'" as one. Solve x (the general solution) in terms of w using the complimentary and particular solution method. In determining the coefficients of your particular solution, it will be required that you assume w – 1z w or 1 – o z -w. Do not use Matlab as its solution will not be identifiable in the solution entry. Do not determine the value of w. You must indicate in your solution: 1. The simplified differential equation in terms of the displacement x you will be solving 2. The m equation and complimentary solution xe 3. The choice for the particular solution and the actual particular solution x,…
2. Consider a car suspension, modeled as a mass/spring/damper system (mass m, stiffness k, damping b). Suppose the height of the chassis is lo at rest, the height of the terrain below the driver varies as h(t), and the height of the chassis is denoted lo + y(t). (i.e., spring deflection away from rest is y(t) – h(t)). 2 (a) Give the transfer function G(s) = H(s) · = (b) Suppose the ground follows an oscillatory profile h(t) A cos(wx (t)) with magnitude A (in meters) and frequency w (measured in radians per meter). Suppose the car is traveling at a constant forward speed v. Using a frequency response analysis strategy, give the amplitude of oscillations experienced by the driver at steady state as a function of m, k, b, A, w, and v. Hint: You can't simply consider |G(iw)| to get the amplification in this case. (c) Suppose the ground varies by A = 5cm, w = 2 rad/m, and you are driving at v = 15 m/s. Using your answer to part (b), what amplitude of oscillation is felt by the driver when m…

Chapter 3 Solutions

Control Systems Engineering

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License