a) CH3(CH2)29CH3, a component found in paraffin wax is a solid at room temperature while octane is a liquid.
Interpretation:
The observation that, CH3(CH2)29CH3, a component found in paraffin wax is a solid at room temperature while octane is a liquid is to be explained.
Concept introduction:
Even in non polar molecules, the attractive dispersion forces are possible, caused by temporary dipoles arising due to the costant change in electon distribution wihin the molecule. These temporary dipoles, though have a fleeting existence are constantly changing. But their cumulative effect may be strong enough to hold the molecule close together so that a substance can be a solid or liquid.
To explain:
The observation that, CH3(CH2)29CH3, a component found in paraffin wax is a solid at room temperature while octane is a liquid.
b) CH3CH2CH2OH has a higher boiling point than CH4
Interpretation:
The observation CH3CH2CH2OH has a higher boiling point than CH4.
Concept introduction:
An attractive interaction between a hydrogen bonded to an electronegative oxygen or nitrogen atom and an unshared electron pair on another oxygen or nitrogrn atom is termed as hydrogen bonding. It is a very strong dipole-dipole interaction that leads to molecular association. These molecules associated through hydrogen bonding will have a high boiling point.
To explain:
The observation CH3CH2CH2OH has a higher boiling point than CH4.
c) CH3CO2H, which is found in vinegar, will dissolve in water but not in oil- for simplicity you may assume oil is CH3(CH2)4CH3
Interpretation:
The observation that CH3CO2H, which is found in vinegar, will dissolve in water but not in oil with molecular formula CH3(CH2)4CH3.
Concept introduction:
Like dissolves like. A polar molecule will dissolve in another polar solvent. The solubility can also be explained using the formation of hydrogen bonding between the two substances.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Organic Chemistry
- Definition and classification of boranes.arrow_forwardWhich of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forward
- Hi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forwardHi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning