Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 28, Problem 7P
To determine
The quantum number
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A magnesium atom (mass ≈≈ 24 proton masses) in a crystal is measured to oscillate with a frequency of roughly 1014 Hz. What is the effective spring constant of the forces holding the atom in the crystal?
A uniform rod of mass M and length L is free to swing back and forth by pivoting a distance x from its center. It undergoes harmonic oscillations by swinging back and forth under the influence of gravity.Randomized Variables
M = 2.4 kgL = 1.6 mx = 0.38 m
a) In terms of M, L, and x, what is the rod’s moment of inertia I about the pivot point.
b) Calculate the rod’s period T in seconds for small oscillations about its pivot point.
c) In terms of L, find an expression for the distance xm for which the period is a minimum.
Please Asap
Chapter 28 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 28.1 - Prob. 28.1QQCh. 28.2 - Prob. 28.2QQCh. 28.2 - Prob. 28.3QQCh. 28.2 - Prob. 28.4QQCh. 28.5 - Prob. 28.5QQCh. 28.5 - Prob. 28.6QQCh. 28.6 - Prob. 28.7QQCh. 28.10 - Prob. 28.8QQCh. 28.10 - Prob. 28.9QQCh. 28.13 - Prob. 28.10QQ
Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQCh. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 16OQCh. 28 - Prob. 17OQCh. 28 - Prob. 18OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74P
Knowledge Booster
Similar questions
- A uniform rod of mass M and length L is free to swing back and forth by pivoting a distance x from its center. It undergoes harmonic oscillations by swinging back and forth under the influence of gravity. Randomized Variables M = 2.8 kg L = 1.7 m x = 0.29 m Part (a) In terms of M, L, and x, what is the rod's moment of inertia I about the pivot point. I= ((ML²)/12) + Mx² ✓ Correct! Part (b) Calculate the rod's period I' in seconds for small oscillations about its pivot point. Part (c) In terms of L, find an expression for the distance xm for which the period is a minimum.arrow_forwardA value of the acceleration of free fail g was determined by measuring the periodof oscillation T of a simple pendulum of length l. The relation between g, T andl is given by: g=4π (l/T^2 )In the experiment, l was measured as 0.55±0.02 m and T was measured as 1.50±0.02 s. Find the:i. Value of g [2]ii. Uncertainty in the value of garrow_forwardIn an oscillatory motion of a simple pendulum, the ratio of the maximum angular acceleration, e"max, to the maximum angular velocity, e'max, is r s (-1). What is the time needed for the pendulum to complete one-half oscillation?arrow_forward
- A mass of 458 g stretches a spring by 7.2 cm. The damping constant is c = 0.34. External vibrations create a force of F(t)= 0.4 sin 5t Newtons, setting the spring in motion from its equilibrium position with zero velocity. What is the imaginary part v, m of the complex root of the homogeneous equation? Use g= 9.8- .Express your answer in two decimal places.arrow_forwardse Show that the (1, 0, 0) and (2, 0, 0) wave functions listed in Table 7.1 are properly normalized. CLarrow_forwardScientists have developed a clever way to measure a mass of virus using a spring. A cantilever beam in the scanning electron microscope image below is like a diving board, except that it is extremely small (a couple of micrometer). The cantilever beam with mass m can oscillate (imagine a vibrating diving board) and it can be modeled as a spring with a spring constant k. What you can measure experimentally is the frequency of oscillation of the cantilever first without the virus (f1) and after the virus had attached itself to the cantilever (f2). (a) Find the mass of virus from f1 and f2 (assume that we don’t know the spring constant k) (b) Suppose the mass of cantilever is 10.0 * 10^-16 g and a frequency of 2.00 * 10^15 Hz without the virus and 2.87 * 10^14 Hz with the virus. What is the mass of the virus?arrow_forward
- An oscillator moves back and forth between the 10 cm and 50 cm marks on a meter stick. What is the location of the EP on the meter stick? In Problem 11, what is the amplitude A?arrow_forwardThe approximation that sin 0 = 0 is only applicable for small angles because A The pendulum always swings at small angles. B The angle does not affect any quantity for the motion of a pendulum. The difference between the sine value and the radian value is small to the point that we can neglect it. D It is easier to analyze the system without the trigonometric function sine.arrow_forwardQ.3 A counter-rotating eccentric mass exciter consisting of two rotating 400 g masses describing circles of 150 mm radius at the same speed, but in opposite senses, is placed on a machine element to induce a steady-state vibration. During a free vibration test, the assembly is displaced and released, the period of vibration is t s, and the ratio of consecutive amplitudes is r to 1.0. The spring stiffness is k = 550 N/m. When the speed of the exciter is 1200 rpm, determine: a) the amplitude of vibration b) the transmitted force to the ground exciter machine k 2 ||arrow_forward
- A body of mass m is suspended by a rod of length L that pivots without friction (as shown). The mass is slowly lifted along a circular arc to a height h. a. Assuming the only force acting on the mass is the gravitational force, show that the component of this force acting along the arc of motion is F = mg sin u. b. Noting that an element of length along the path of the pendulum is ds = L du, evaluate an integral in u to show that the work done in lifting the mass to a height h is mgh.arrow_forwardK ( thevine white 51649 1₁ Class Work ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE ELECTRICITY MECHANICS acceleration A amplitude C. No - FM E e energy frequency f F = force K kinetic energy spring constam Wal- Langular mothentom (length P = power P momentum U 1.99 T= period wtime V b. Find the acceleration each mass. radius or separation W R-E! A 7. AV potential energy volume P-TAV R-ER What is the tension force in the rope? F 4 15 kg 1 = Jonash - speed work done on a system position scceleration w power charge 12 kg O 1. "A 12 kg load hangs from one end of a rope that passes over a small frictionless pulley. A 15 kg counterweight is suspended from the other end of the rope. The system is released from rest & time V a. Draw a free-body diagram for each object showing all applied forces in relative scale. Next to each diagram show the direction of the acceleration of that object. d. What distance does the 12 kg load move in the first 3 s? TEQUESEN What is the velocity of 15 kg…arrow_forwardA pendulum of length L oscillates with a frequency of 0.59 Hz near the surface of the planet Magrathea. When the length of the pendulum is decreased by 42 cm, the frequency increases to 0.81 Hz. What was the initial length of the pendulum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning