Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 58P
(a)
To determine
The probability that the electron tunnels though the barrier.
(b)
To determine
The probability that the electron is reflected.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A beam of electrons is incident on a barrier that is 0.60 nm wide and 6.40 eV high. If the number of electrons striking the barrier each second is 6.50 ✕ 1021 /s with an energy of 5.35 eV, then how long would it take for a single electron to be transmitted through the barrier?
An electron with a kinetic energy of 44.34 eV is incident on a square barrier with Up = 57.43 eV and w =
2.200 nm. What is the probability that the electron tunnels through the barrier? (Use 6.626 x 1034 j x S
for h, 9.109 x 1031 kg for the mass of an electron, and 1.60 x 1019 C for the charge of an electron.)
An electron having total energy E = 4.50 eV approaches a rectangular energy barrier with U = 5.00 eV and L = 950 pm as shown in Figure P40.21. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero.(b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.50-eV electron tunneling through the barrierto be one in one million?
Chapter 28 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 28.1 - Prob. 28.1QQCh. 28.2 - Prob. 28.2QQCh. 28.2 - Prob. 28.3QQCh. 28.2 - Prob. 28.4QQCh. 28.5 - Prob. 28.5QQCh. 28.5 - Prob. 28.6QQCh. 28.6 - Prob. 28.7QQCh. 28.10 - Prob. 28.8QQCh. 28.10 - Prob. 28.9QQCh. 28.13 - Prob. 28.10QQ
Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQCh. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 16OQCh. 28 - Prob. 17OQCh. 28 - Prob. 18OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron is moving past the square barrier shown in Fig. , but the energy of the electron is greater than the barrier height. If E = 2U0 , what is the ratio of the de Broglie wavelength of the electron in the region x 7 L to the wavelength for 0 6 x 6 L?arrow_forwardWhen light from a mercury lamp (λ = 546.1 nm) is incident on a particular metal surface, the stopping potential is 0.948 V. (a) What is the work function (in eV) for this metal? eV (b) What stopping potential (in V) would be observed when using light from a red lamp (λ = 650.0 nm)? Varrow_forwardH1arrow_forward
- 13.a. In a Compton scattering, a photon of wavelength (439) nm is collided with an electron and scattered through an angle (69)°. Calculate the energy transferred to the electron in this collision. b. A rectangular block of copper having dimensions (20.5) cm × (20.5) cm × (49) cm. If the resistivity (?) of copper is 17.2 n Ω?, determine its resistance.arrow_forwardAn electron with an initial total energy of E=3.757 eV (in a region with zero potential) is incident on a potential step (extending from x=0 to infinity) to V=1.952 eV. What is the electron's de Broglie wavelength in nm once it crosses the potential step?arrow_forwardAn electron has a momentum py = 1.40×10−251.40×10−25 kg.m/s. What is the minimum uncertainty in its position that will keep the relative uncertainty in its momentum (Δpy/p) below 2.7%?arrow_forward
- An electron moves in the x direction with a speed of 3.6 x 10 m/s. We can measure its speed to a precision of 1%. With what precision can we simultaneously measure its x coordinate?arrow_forwardAn electron is trapped within a sphere whose diameter is 5.40×10−155.40×10−15 m (about the size of the nucleus of a medium sized atom). What is the minimum uncertainty in the electron's momentum?arrow_forwardAn alpha particle is a helium nucleus consisting of two protons and two neutrons. It is moving with a speed of 1.90 × 103 m/s. What is the momentum of the alpha particle? (Give answer in kg x m/s) а. b. If there is a 25% uncertainty in the momentum of this alpha particle, what is the minimum uncertainty in the position of the alpha particle? (Give your answer in meters)arrow_forward
- An electron has been accelerated by a potential difference of 100 V. If its position is known to have an uncertainty of 1 nm, what is the percent uncertainty (Δp/p×100) of the electronarrow_forwardAn electron has total energy 6.29 eV. The particle initially travels in a region with constant potential energy 0.61 eV, before encountering a step to a new constant potential energy of 4.03 eV. What is the probability (in %) that the electron will be transmitted over the potential step?arrow_forwardIf the position of an electron in a membrane is measured to an accuracy of 3.58 µm, what is the electron's minimum uncertainty in velocity (in m/s)? a) If the electron has this velocity, what is its kinetic energy in eV? b) What are the implications of this energy, comparing it to typical molecular binding energies?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning