College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 28, Problem 74GP
To determine
The length of the box.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron confined in a one-dimensional box emits a 800 nm photon in a quantum jump from n=2 to n=1 .
What is the length of the box? IN MM
The mass of an electron is about 9.11x10^-31 kg. What is the de Broglie wavlength of an electron that is moving at 0.01 m/s? That is on what size scale would we expect to observe electrons with these low velocities behaving like quantum waves?
pick a choice
a.
7.27x10^-5 m
b.
0.73 m = 73 cm
c.
7.27x10^-6 m
d.
0.073m = 7.3 cm
As an electron in a one-dimensional box of length 0.600 nm jumps between two energy levels, a photon of energy 8.36 eV is emitted. What are the quantum numbers of the two levels?
Chapter 28 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQ
Ch. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 21CQCh. 28 - Prob. 22CQCh. 28 - Prob. 23CQCh. 28 - Prob. 24CQCh. 28 - Prob. 25CQCh. 28 - Prob. 26CQCh. 28 - Prob. 27CQCh. 28 - Prob. 28MCQCh. 28 - Prob. 29MCQCh. 28 - Prob. 30MCQCh. 28 - Prob. 31MCQCh. 28 - Prob. 32MCQCh. 28 - Prob. 33MCQCh. 28 - Prob. 34MCQCh. 28 - Prob. 35MCQCh. 28 - Prob. 36MCQCh. 28 - Prob. 37MCQCh. 28 - Prob. 38MCQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58GPCh. 28 - Prob. 59GPCh. 28 - Prob. 60GPCh. 28 - Prob. 61GPCh. 28 - Prob. 62GPCh. 28 - Prob. 63GPCh. 28 - Prob. 64GPCh. 28 - Prob. 65GPCh. 28 - Prob. 66GPCh. 28 - Prob. 67GPCh. 28 - Prob. 68GPCh. 28 - Prob. 69GPCh. 28 - Prob. 70GPCh. 28 - Prob. 71GPCh. 28 - Prob. 72GPCh. 28 - Prob. 73GPCh. 28 - Prob. 74GPCh. 28 - Prob. 75GPCh. 28 - Prob. 76GPCh. 28 - Prob. 77GPCh. 28 - Prob. 78GPCh. 28 - Prob. 79MSPPCh. 28 - Prob. 80MSPPCh. 28 - Prob. 81MSPPCh. 28 - Prob. 82MSPPCh. 28 - Prob. 83MSPPCh. 28 - Prob. 84MSPPCh. 28 - Prob. 85MSPPCh. 28 - Prob. 86MSPPCh. 28 - Prob. 87MSPPCh. 28 - Prob. 88MSPPCh. 28 - Prob. 89MSPPCh. 28 - Prob. 90MSPPCh. 28 - Prob. 91MSPPCh. 28 - Prob. 92MSPP
Knowledge Booster
Similar questions
- An electron has a wavelength of 400 nm (the same as blue light). A. What is the electron’s momentum? B. What’s the minimum uncertainty in the electron’s position if its uncertainty in its momentum is 10-28 kg m/s? Compare this value to its wavelength.arrow_forwarda.Draw the wave function for a particle in a box at the n-3 energy level. b.Draw the probability distribution for a particle in a box at the n-3 energy level. c.A nanoparticle with mass equal to 15 x 10-27 g exists in a 10 nm one-dimensional box. What is the wavelength of radiation emitted when it decays from the n-3 level to the n- 2 level? For a 1 nm box?arrow_forwardAn electron has a momentum py = 1.40×10−251.40×10−25 kg.m/s. What is the minimum uncertainty in its position that will keep the relative uncertainty in its momentum (Δpy/p) below 2.7%?arrow_forward
- Electrons with a speed of 2.0 x 106 m/s pass through a double-slit apparatus. Interference fringes are detected with a fringe spacing of 1.5 mm.a. What will the fringe spacing be if the electrons are replaced by neutrons with the same speed?b. What speed must neutrons have to produce interference fringes with a fringe spacing of 1.5 mm?arrow_forwardAn electron is accelerated through a potential difference of 26 000 V. What is the de Broglie wavelength of the electron (in m)?arrow_forwardAccording to quantum mechanics all objects have a wavelength related to their momentum. What is the de Broglie wavelength of an electron that has been accelerated from rest through a potential of 2500V? Select one: a. 0.346 angstroms. b. 5.63 x 10-14 m. c. 0.245 angstroms. d. 0.173 angstroms.arrow_forward
- a. An electron is found to a wavelength of 1 = 1.19 nm. What is the velocity of the electron? m/s b. A photon has a wavelength of A = 1.19 nm. What is the energy of the photon? Joulesarrow_forwardThe diameter of a Hydrogen atom is about 10.6 nm. What is the minimum uncertainty in momentum of an electron along this diameter if it's uncertainty in position is equal to the diameter of the atom? Question 8 options: 1.17*10-25kgms 9.94*10-26kgms 1.17*10-26kgms 9.94*10-27kgms None of the other responses are correct.arrow_forwardThe speed of an electron is measured to within an uncertainty of 2.0 × 104 m/s. What is the size of the smallest region of space in which the electron can be confined?arrow_forward
- An electron is located on a pinpoint having a diameter of 2.5 µm. What is the minimum uncertainty in the speed of the electron?arrow_forwardMY NOTES ASK YOUR TEACHER PRACTICE ANOTH OBINPHYS8 10.P.005. DETAILS Electrons striking the back of a conventional TV screen travel at a speed of about 1.5 x 107 m/s. What is their de Broglie wavelength (in nm)? nm Need Help? Read It DETAILS OBINPHYS8 10.P.008. MY NOTES ASK YOUR TEACHER PRACTICE ANOTH If a proton were traveling the same speed as electrons in a TV picture tube (about 7.7 x 107 m/s), what would its de Broglie wavelength be? The mass of a proton is 1.67 x 10-27 kg. m Need Help? Read It Watch Itarrow_forward1. A particle in an infinite well is in the ground state with energy 1.54 eV. How much energy must be added to reach the second excited state (n = 3)? The third excited state (n = 4)? 2. An electron is trapped in a one-dimensional well of width 0.132 nm. The electron is in the n = 10 state. What is the energy of the electron? What is the uncertainty in its momentum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning