Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 28, Problem 28.2QQ
With the switch in the circuit of Figure 27.4a closed, there is no current in R2 because the current has an alternate zero-resistance path through the switch. There is current in R1, and this current is measured with the ammeter (a device for measuring current) at the bottom of the circuit. If the switch is opened (Fig. 27.4b), there is current in R2. What happens to the reading on the ammeter when the switch is opened? (a) The reading goes up. (b) The reading goes down. (c) The reading does not change.
Figure 27.4 (Quick Quiz 27.2) What happens when the switch is opened?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In (Figure 1), the total resistance is 12.0 kΩ , and the battery's emf is 26.0 V . The time constant is measured to be 14.0 μs .
Calculate the total capacitance of the circuit.
Calculate the time it takes for the voltage across the capacitor to reach 15.0 VV after the switch is closed.
The capacitor in the circuit shown is fully charged by a 24 V battery. The switch is closed at t = 0. At sometime after
the switch is closed, the voltage across the capacitor is measured to be 10 V. What is the current in the circuit at
this time, in Ampere? C = 3.0 µF, and R = 2.0 02.
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not
include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the
question statement.
Cil
in the circuit below, when the switch S is open, the current through R1is i1(open)= 1.636 A. When the switch is closed,this current changes to i1(closed)= 1.565 A. What are the emf and internal resistance of the battery?
Chapter 28 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 28 - To maximize the percentage of the power from the...Ch. 28 - With the switch in the circuit of Figure 27.4a...Ch. 28 - With the switch in the circuit of Figure 27.6a...Ch. 28 - Prob. 28.4QQCh. 28 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Is a circuit breaker wired (a) in series with the...Ch. 28 - A battery has some internal resistance. (i) Clan...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - When operating on a 120-V circuit, an electric...Ch. 28 - If the terminals of a battery with zero internal...
Ch. 28 - Prob. 28.6OQCh. 28 - What is the time constant of the circuit shown in...Ch. 28 - When resistors with different resistances are...Ch. 28 - When resistors with different resistances are...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - Are the two headlights of a car wired (a) in...Ch. 28 - In the circuit shown in Figure OQ28.12, each...Ch. 28 - Prob. 28.13OQCh. 28 - A circuit consists of three identical lamps...Ch. 28 - A series circuit consists of three identical lamps...Ch. 28 - Suppose a parachutist lands on a high-voltage wire...Ch. 28 - A student claims that the second of two lightbulbs...Ch. 28 - Why is ii possible for a bird to sit on a...Ch. 28 - Given three lightbulbs and a battery, sketch as...Ch. 28 - Prob. 28.5CQCh. 28 - Referring to Figure CQ28.6, describe what happens...Ch. 28 - Prob. 28.7CQCh. 28 - (a) What advantage does 120-V operation offer over...Ch. 28 - Prob. 28.9CQCh. 28 - Prob. 28.10CQCh. 28 - A battery has an emf of 15.0 V. The terminal...Ch. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and 171...Ch. 28 - As in Example 27.2, consider a power supply with...Ch. 28 - Three 100- resistors are connected as shown in...Ch. 28 - Prob. 28.6PCh. 28 - What is the equivalent resistance of the...Ch. 28 - Consider the two circuits shown in Figure P27.5 in...Ch. 28 - Consider the circuit shown in Figure P28.9. Find...Ch. 28 - (a) You need a 45- resistor, but the stockroom has...Ch. 28 - A battery with = 6.00 V and no internal...Ch. 28 - A battery with emf and no internal resistance...Ch. 28 - (a) Kind the equivalent resistance between points...Ch. 28 - (a) When the switch S in the circuit of Figure...Ch. 28 - Prob. 28.15PCh. 28 - Four resistors are connected to a battery as shown...Ch. 28 - Consider die combination of resistors shown in...Ch. 28 - For the purpose of measuring the electric...Ch. 28 - Calculate the power delivered to each resistor in...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - Consider the circuit shown in Figure P28.21 on...Ch. 28 - In Figure P28.22, show how to add just enough...Ch. 28 - The circuit shown in Figure P27.17 is connected...Ch. 28 - For the circuit shown in Figure P28.24, calculate...Ch. 28 - What are the expected readings of (a) the ideal...Ch. 28 - The following equations describe an electric...Ch. 28 - Taking R = 1.00 k and = 250 V in Figure P27.19,...Ch. 28 - You have a faculty position at a community college...Ch. 28 - The ammeter shown in Figure P28.29 reads 2.00 A....Ch. 28 - In the circuit of Figure P28.30, determine (a) the...Ch. 28 - Using Kirchhoffs rules, (a) find (he current in...Ch. 28 - In the circuit of Figure P27.20, the current I1 =...Ch. 28 - In Figure P28.33, find (a) the current in each...Ch. 28 - For the circuit shown in Figure P27.22, we wish to...Ch. 28 - Find the potential difference across each resistor...Ch. 28 - (a) Can the circuit shown in Figure P27.21 be...Ch. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Consider a series RC circuit as in Figure P28.38...Ch. 28 - A 2.00-nF capacitor with an initial charge of 5.10...Ch. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - The circuit in Figure P28.43 has been connected...Ch. 28 - Show that the integral 0e2t/RCdtin Example 27.11...Ch. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 28.46PCh. 28 - Prob. 28.47PCh. 28 - Turn on your desk lamp. Pick up the cord, with...Ch. 28 - Assume you have a battery of emf and three...Ch. 28 - Find the equivalent resistance between points a...Ch. 28 - Four 1.50-V AA batteries in series are used to...Ch. 28 - Four resistors are connected in parallel across a...Ch. 28 - The circuit in Figure P27.35 has been connected...Ch. 28 - The circuit in Figure P27.34a consists of three...Ch. 28 - For the circuit shown in Figure P28.55. the ideal...Ch. 28 - The resistance between terminals a and b in Figure...Ch. 28 - (a) Calculate the potential difference between...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - A rechargeable battery has an emf of 13.2 V and an...Ch. 28 - Find (a) the equivalent resistance of the circuit...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - The- pair of capacitors in Figure P28.63 are fully...Ch. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - The circuit in Figure P27.41 contains two...Ch. 28 - Two resistors R1 and R2 are in parallel with each...Ch. 28 - Prob. 28.67APCh. 28 - A battery is used to charge a capacitor through a...Ch. 28 - A young man owns a canister vacuum cleaner marked...Ch. 28 - (a) Determine the equilibrium charge on the...Ch. 28 - Switch S shown in Figure P28.71 has been closed...Ch. 28 - Three identical 60.0-W, 120-V lightbulbs are...Ch. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - In Figure P27.47, suppose the switch has been...Ch. 28 - Figure P27.48 shows a circuit model for the...Ch. 28 - The student engineer of a campus radio station...Ch. 28 - The circuit shown in Figure P28.78 is set up in...Ch. 28 - An electric teakettle has a multiposition switch...Ch. 28 - A voltage V is applied to a series configuration...Ch. 28 - In places such as hospital operating rooms or...Ch. 28 - The switch in Figure P27.51a closes when Vc23Vand...Ch. 28 - The resistor R in Figure P28.83 receives 20.0 W of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the circuit of Figure P27.25, the switch S has been open for a long time. It is then suddenly closed. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time. Figure P27.25 Problems 25 and 26.arrow_forwardAn initially charged capacitor has an initial voltage of V=40V and a capacitance of C=204µF and it is connected to a resistor of resistance R=4.34k2 as shown in the figure below. The switch is closed at r=0. Determine the current running in the circuit one time constant after the switch is closed. Express your answer in units of mA using one decimal place. S Yanıtınızı ekleyin C www ERarrow_forwardIn the circuit shown in figure 1, epsilon is equal to 41.0 V, R1= 4 ohms, R2= 6 ohms, and R3= 3 ohms. (A) what is the potential difference Vab between points a and b when the switch S is open? (B) for the 4 ohm resistor, calculate the current through the resistor with S open. (C) for the 6 ohm resistor, calculate the current through the resistor with S open. (D) for the 3 ohm resistor calculate the current through the resistor with S open. (E) what is the potential difference Vab between points a and b when the switch S is closed? (F) for the 4 ohm resistor calculate the current through the resistor with S closed. (G) for the 6 ohm resistor calculate the current through the resistor with S closed (H) for the 3 ohm resistor calculate the current through the resistor with S closed. (I) for each resistor, does the current increase or decrease when S is closed?arrow_forward
- In the adjacent circuit, the voltages and voalues of resistance are unknown. The value of the current running through R1 is 5.3 mA going from left to right, and the current through R3 is 1.8 mA from the top of R3 to the bottom. The value of the current through R2 running from right to left (in mA) is: R1 R2 R3 V1 V2 O a. 2.65 O b. 10.60 O c.7.10 O d.-3.50 O e. 3.50arrow_forwardThe current in a single-loop circuit with one resistance R is 5.8 A. When an additional resistance of 1.9 2 is inserted in series with R, the current drops to 5.1 A. What is R? Number i Units +arrow_forwardThe switch is at point a for a long time. What is current through R2 immediately after the switch is moved to point b, in Ampere? & 54 V, R1 = 2.802, R2 = 16 Q2, C = 2.0 F. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. R1 с R2 wwwarrow_forward
- Question 8. Please help with the question attached below.arrow_forwardAn uncharged capacitor and a resistor are connected in series to a battery as shown in Figure, where e= 12.0 V, C = 5.00 mF, and R = 8.00 × 105 W. The switch is thrown to position a. Find the time constant of the circuit, the maximum charge on the capacitor, the maximum current in the circuit, and the charge and current as functions of time.arrow_forwardIn the circuit diagram below, the switch S is closed for a long time (which means that the capacitor C is fully charged, and so there will be no current in the capacitor's branch of the circuit). In the figure, Vo = 12 V, R₁ = 22 R₂ = 42 and C = 1 μF. S I R₂ R₁ C a) What is the voltage across R₁ (when C is fully charged) ? b) What is the voltage across C (when C is fully charged)? c) The switch S is now opened. What is the current through R₁ as a function of time, t?arrow_forward
- You connect a battery, a resistor, and a capacitor as shown in Figure 4, in that e = 36.0 V, C = 5.0 uF and R = 120 Ohms C. The switch S is closed at t = 0. (a) When the voltage across the capacitor is 8.00 V, what is the magnitude of the current in the circuit? (b) At what time t after the switch is closed the voltage across the capacitor is equal to 8.00 V? (c) When the voltage across the capacitor equals 8.00 V, at what speed is energy being stored in the capacitor? Translation: "Chave aberta" = switch openarrow_forwardFigure 2 shows the arrangement of three resistors. The switch L is intially opened. Calculate I1, I2 and I3. The switch L is now closed. Compute the new current for I1, I2 and I3 A light bulb has been introduced to replace E1. Describe changes that can be observed in the circuiit.arrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where E = 46.0 V, C = 5.00 μF, and R = 130 Ω. The switch S is closed at t = 0. When the voltage across the capacitor is 8.00 VV, what is the magnitude of the current in the circuit? At what time tt after the switch is closed is the voltage across the capacitor 8.00 V? When the voltage across the capacitor is 8.00 V, at what rate is energy being stored in the capacitor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY