College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two 1.50-V batteries—with their positive terminals in the same direction—are inserted in series into a flashlight. One battery has an internal resistance of 0.255 Ω, and the other has an internal resistance of 0.153 Ω. When the switch is closed, the bulb carries a current of 600 mA. (a) What is the bulbs resistance?
(b) What fraction of the chemical energy transformed appears as internal energy in the batteries?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particular myelinated axon has nodes spaced 0.80 mm apart. The resistance between nodes is 20 MQ; the capacitance of each insulated segment is 1.2 pF. What is the conduction speed of a nerve impulse along this axon?arrow_forwardTwo 6.0 µF capacitors, two 2.2 kΩ resistors, and a 12.5 V source are connected in series. Starting from the uncharged state, how long does it take for the current to drop from its initial value to 1.30 mA?arrow_forwardTwo 1.50-V batteries-with their positive terminals in the same direction-are inserted in series into the barrel of a flashlight. One battery has an internal resistance of 0.330 , the other an internal resistance of 0.190 2. When the switch is closed, a current of 600 mA occurs in the lamp. (a) What is the bulb's resistance? 2 (b) What fraction of the chemical energy transformed appears as internal energy in the batteries? % Need Help? Read Itarrow_forward
- > Lightbulb A is marked "60.0 W 120 V," and lightbulb B is marked "100 W 120 V." These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120-V source. (a) Find the resistance of each lightbulb. Ω RA RB Ω = (b) During what time interval does 1.20 C pass into lightbulb A? S (c) Is this charge different upon its exit versus its entry into the lightbulb? Yes No Explain. This answer has not been graded yet. (d) In what time interval does 1.40 J pass into lightbulb A? S (e) By what mechanisms does this energy enter and exit the lightbulb? Explain. This answer has not been graded yet. (f) Find the cost of running lightbulb A continuously for 30.0 days, assuming the electric company sells its product at $0.110 per kWh. (arrow_forwardConsider the network of four resistors shown in the diagram, where R1 = 1 Ω, R2 = 5 Ω, R3 =2Ω,andR4 =6Ω. . The resistors are connected to a battery with an emf V. (a) What is the current flowing out of the battery if the emf is 12 V? (B) What is the voltage difference across the resistor R1? (C) What is the rate of Ohmic dissipation for resistor R2?arrow_forwardThree resistors with values of 60 Q, 30 Q, and 20 Q, respectively, are connected in series to a 110 V battery of negligible internal resistance. Draw a circuit diagram and find the (a) equivalent resistance of the combined resistors. (b) current flowing through each resistor, A (C) voltage drop across each resistor, and 60 Q: V 30 Ω: V 20 0: V (d) the power dissipated by each resistor. 60 Q: 30 Ω 20 0: Warrow_forward
- Consider the circuit shown that has two resistors (each with resistance R = 8.00 Q), a battery with negligible internal resistance (V= 12.0 V), and a lightbulb. If the resistance of the lightbulb is 3.50 Q, calculate the power output of the lightbulb (ie. the rate at which energy is dissipated in the lightbulb). R R 12 W 2.2 W 6.8 W 4.0 Warrow_forwardPlease show stepsarrow_forwardPlease Asaparrow_forward
- In the circuit shown in the figure, the S switch closed at t=0 and the capacitors, which are completely empty, begin to fill. Here ε=10 V, C=5 μF and R=55 Ω. What is the time constant of the circuit, τ, in units of microseconds? When t= τ, what is the total charge, in units of microcoulomb, accumulated in the capacitors?arrow_forwardAn unknown resistor is connected between the terminal of a 3.00 V battery. The power dissipated in the resistor is 0.540 W. The same resistor is then connected between the terminals of a 1.50 V battery. What power is dissipated in this case?arrow_forwardThree resistors with values of 60.00, 30.00 and 20.0Q, respectively, are connected in parallel to a 110.0V of a negligible internal resistance. Draw the circuit diagram and find the (a) equivalent resistance of the combined resistors, (b) current flowing through each resistor, (c) voltage across each resistor, and (d) the power dissipated by each resistor.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON