a)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000 with solubility in Octane has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
b)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000 with solubility in Methanol-Water mixture has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
c)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000 ,weak acid has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
d)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000, highly polar has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
e)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000, ionic has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
f)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000, soluble in Water, non-ionic and various sized solutes has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
g)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000, soluble in Water, variety of charges has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
h)
Interpretation:
The type of liquid chromatography that is used to separate a compound with molecular mass < 2000, soluble in Tetrahydrofuran has to be identified.
Concept Introduction:
Liquid Chromatography:
Liquid Chromatography is used for the separation of sample to its individual parts. The separation happens based on the interactions of the sample with mobile and stationary phase.
HPLC is High Pressure Liquid Chromatography. Here, it is same as liquid chromatography but the difference is that high pressure is used. This method uses small columns and particle size. By using HPLC, one can identify, separate and quantitate the components that is present in the given sample.
High Pressure Liquid Chromatography uses high pressure to generate the flow of mobile phase in the packed columns. As the packed columns are small in size and the particles that are packed in the column also is present in the order of micrometers, high pressure is required to generate flow of the mobile phase into the stationery phase. Therefore, high pressure is required in HPLC.
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
Quantitative Chemical Analysis
- 2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2arrow_forward4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forward
- Please correct answer and don't use hand rating and don't use Ai solutionarrow_forward1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forwardThe following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forward
- Select all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forwardQuestion 2 of 25 point Question Attempt 3 of Ulimited Draw the structure for 3-chloro-4-ethylheptane. Part 2 of 3 Click and drag to start drawing a structure. Draw the structure for 1-chloro-4-ethyl-3-lodooctane. Click and drag to start drawing a structure. X G X B c Part 3 of 30 Draw the structure for (R)-2-chlorobutane. Include the stereochemistry at all stereogenic centers. Check Click and drag to start drawing a structure. G X A 。 MacBook Pro G P Save For Later Submit Assignment Privacyarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardIn a silicon and aluminum alloy, with 12.6% silicon, what are the approximate percentages of the phases present in the constituent that is formed at the end of solidification? Temperature (°C) 1500 1000 L B+L 1415- α+L 577' 500 1.65 12.6 99.83 α+B B 0 Al 20 40 60 Weight percent silicon 80 Siarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY