Concept explainers
BIO MRI Scanner An MRI scanner is based on a solenoid magnet that produces a large magnetic field. The magnetic field doesn’t stop at the solenoid s edge, however, but extends into the area around the magnet. Suppose a technician walks toward the scanner at 0 80 m/s from a region 1 0 m from the scanner where the magnetic field is negligible, into a region next to the scanner where the field is 4.0 T and points horizontally (a) As a result of this motion, what is the maximum magnitude of the change in flux through a loop defined by the outside of the technician’s head? Assume the loop is vertical and has a circular cross section with a diameter of 18 cm. (b) What is the magnitude of the average induced emf around the outside of the technician’s head during the time she’s moving toward the scanner? (The biological effects due to motion in a strong magnetic field include nausea and dizziness )
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
Physics (5th Edition)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Chemistry (7th Edition)
Campbell Biology in Focus (2nd Edition)
- A conductor consists of a circular loop of radius K and two long, straight sections as shown in Figure P50.7. The wire lies in the plane of the paper and carries a current I. (a) What is the direction of the magnetic field at the center of the loop? (b) Find an expression for the magnitude of the magnetic field at the center of the loop.arrow_forward(a) What is the angle between a wire carrying an 8.00-A current and the 1.20-T field it is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire if it is rotated to make an angle of 90° with the field?arrow_forward(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in Earth's field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity' and noting that static is often absent,arrow_forward
- A proton enters a region with a uniform electric field E=5.0kV/m and a uniform magnetic field B=5.0104kT. The proton has initial velocity v0=2.5105m/s. How far along the z axis does the proton travel after it undergoes three complete revolutions?arrow_forwardUnreasonable results A charged particle having mass 6.641027kg (that of a helium atom) moving at 8.70105m/s perpendicular to a 1.50-T magnetic field travels in a circular path of radius 16.0 mm. (a) What is the charge of the particle? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by competing it with typical static electricity and noting that static is often absent.arrow_forward
- A thin, nonconducting disk of radius R is free to rotate around the axis that passes through its center and is perpendicular to the face of the disk. The disk is charged uniformly with a total charge q. If the disk rotates at a constant angular velocity , what is tire magnetic field at its center?arrow_forwardA proton moving horizontally enters a region where a uniform magnetic field is directed perpendicular to the proton's velocity as shown in Figure OQ29.4. After the proton enters the field, does it (a) deflect downward, with its speed remaining constant; (b) deflect upward, moving in a semicircular path with constant speed, and exit the field moving to the left; (c) continue to move in the horizontal direction with constant velocity; (d) move in a circular orbit and become trapped by the field; or (e) deflect out of the plane of the paper?arrow_forwardDetermine the magnetic field (in terms of I, a, and d) at the origin due to the current loop in Figure P29.9. The loop extends to infinity above the figure. Figure P29.9arrow_forward
- An electron moves in a circle of radius r at uniform speed around a single stationary proton. Find an expression for the magnitude of the magnetic field at the center of the circle in terms of 0, e, the speed v, and r.arrow_forwardFind the direction of the magnetic field acting on a positively charged particle moving in the various situations shown in Figure P28.3 if the direction of the magnetic force acting on it is as indicated. Figure P28.3arrow_forward(a) A proton moving with velocity v=ii experiences a magnetic force F=Fij. Explain what you can and cannot infer about B from this information. (b) What If? In terms of Fi, what would be the force on a proton in the same field moving with velocity v=ii? (c) What would be the force on an electron in the same field moving with velocity v=ii?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning