Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23.3, Problem 3EYU
In system 1 the magnetic flux through a coil with 2 turns changes from 1 T · m: to 11 T · m2 in 5 s; in system 2 the magnetic flux through a coil with 3 turns changes from 1 T · m2 to 2 T · m2 in 0.5 s. Is the magnitude of the induced emf in system 1 greater than, less than, or equal to the magnitude of the induced emf in system 2? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
. In system 1 the magnetic flux through a coil with 2 turns changes from 1 T # m2to11 T # m2in 5 s; in system 2 the magnetic flux through a coil with 3 turns changes from1 T # m2to 2 T # m2in 0.5 s. Is the magnitude of the induced emf in system 1 greaterthan, less than, or equal to the magnitude of the induced emf in system 2? Explain.
A rectangular loop of wire 0.5 m wide and 1.5 m long is moving out of a uniform magnetic field B = 2 T at a constant speed of 2m/s. The left side of the loop stays inside the field when the right side is out. The resistance of the loop is 0.5 Ω. b. Calculate the induced emf in Volts in the loop. Topic: Electromagnetic Induction
A circular loop of wire with a radius of 10 cm is laying on a tabletop. A uniform magnetic field of 1.5 T is flowing through the loop. A) If a student picks up the loop and moves it to a bench on the other side of the room, what emf would be induced in the first two milliseconds? B) What direction would the current be going if looking down from above.
Chapter 23 Solutions
Physics (5th Edition)
Ch. 23.1 - Which of the following situations results in an...Ch. 23.2 - What is the angle in the definition of magnetic...Ch. 23.3 - In system 1 the magnetic flux through a coil with...Ch. 23.4 - A metal ring moves to the right from a field-free...Ch. 23.5 - Suppose the speed of the rod in Example 23-8 is...Ch. 23.6 - Consider the electric generator shown in Figure...Ch. 23.7 - Prob. 7EYUCh. 23.8 - Consider the circuit shown in Figure 23-25. (a) Is...Ch. 23.9 - Is more energy stored in an inductor by doubling...Ch. 23.10 - If a transformer doubled both the voltage and the...
Ch. 23 - Explain the difference between a magnetic field...Ch. 23 - A metal ring with a break in its perimeter is...Ch. 23 - Many equal-arm balances have a small metal plate...Ch. 23 - Figure 23-29 shows a vertical iron rod with a wire...Ch. 23 - A metal rod of resistance R can slide without...Ch. 23 - Recently, NASA tested a power generation system...Ch. 23 - Explain what happens when the angular speed of the...Ch. 23 - A 0 085-T magnetic field passes through a circular...Ch. 23 - A uniform magnetic field of 0.0250 T points...Ch. 23 - A magnetic field is oriented at an angle of 67 to...Ch. 23 - MRI Solenoid The magnetic field produced by an MRI...Ch. 23 - Find the magnitude of the magnetic flux through...Ch. 23 - At a certain location, the Earths magnetic field...Ch. 23 - A solenoid with 385 turns per meter and a diameter...Ch. 23 - A single-turn square loop of side L is centered on...Ch. 23 - A bar magnet is inside a closed cubical box...Ch. 23 - A 0.65-T magnetic field is perpendicular to a...Ch. 23 - Prob. 11PCECh. 23 - Figure 23-33 shows the magnetic flux through a...Ch. 23 - One type of antenna for receiving AM radio signals...Ch. 23 - A wire loop is placed in a magnetic field that is...Ch. 23 - Figure 23-35 shows four different situations in...Ch. 23 - Predict/Calculate The magnetic flux through a...Ch. 23 - Prob. 17PCECh. 23 - A single conducting loop of wire has an area of...Ch. 23 - The area of a 120-turn coil oriented with its...Ch. 23 - An emf is induced in a conducting loop of wire...Ch. 23 - A magnetic field increases from 0 to 0.55 T in 16...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain A metal ring is dropped into a...Ch. 23 - Predict/Explain Figure 23-37 shows two metal disks...Ch. 23 - Predict/Explain (a) As the solid metal disk in...Ch. 23 - A bar magnet with its north pole pointing downward...Ch. 23 - A Wire Loop and a Magnet A loop of wire is dropped...Ch. 23 - Suppose we change the situation shown in Figure...Ch. 23 - Figure 23-39 shows a current-carrying wire and a...Ch. 23 - Consider the physical system shown in Figure...Ch. 23 - Prob. 31PCECh. 23 - Prob. 32PCECh. 23 - Prob. 33PCECh. 23 - A conducting rod slides on two wires in a region...Ch. 23 - A metal rod 0.95 m long moves with a speed of 2.4...Ch. 23 - Airplane emf A Boeing KC-135A airplane has a...Ch. 23 - Predict/Calculate Figure 23-42 shows a...Ch. 23 - Referring to part (a) of Problem 37, (a) find the...Ch. 23 - (a) Find the current that flows in the circuit...Ch. 23 - Suppose the mechanical power delivered to the rod...Ch. 23 - Prob. 41PCECh. 23 - A rectangular coil 25 cm by 45 cm has 150 turns....Ch. 23 - A 1 6-m wire is wound into a coil with a radius of...Ch. 23 - Shake Flashlight A shake flashlight uses the...Ch. 23 - Predict/Calculate A circular coil with a diameter...Ch. 23 - A generator is designed to produce a maximum emf...Ch. 23 - Prob. 47PCECh. 23 - Prob. 48PCECh. 23 - Prob. 49PCECh. 23 - Prob. 50PCECh. 23 - Prob. 51PCECh. 23 - Prob. 52PCECh. 23 - Prob. 53PCECh. 23 - A simple RL circuit includes a 0.125-H inductor....Ch. 23 - Prob. 55PCECh. 23 - Prob. 56PCECh. 23 - Prob. 57PCECh. 23 - Prob. 58PCECh. 23 - Prob. 59PCECh. 23 - Prob. 60PCECh. 23 - Prob. 61PCECh. 23 - Alcator Fusion Experiment In the Alcator fusion...Ch. 23 - Superconductor Energy Storage An engineer proposes...Ch. 23 - Prob. 64PCECh. 23 - Prob. 65PCECh. 23 - Prob. 66PCECh. 23 - Transformer 1 has a primary voltage Vp and a...Ch. 23 - The electric motor in a toy train requires a...Ch. 23 - Predict/Calculate A disk drive plugged into a...Ch. 23 - A transformer with a turns ratio...Ch. 23 - A neon sign that requires a voltage of 11,000 V is...Ch. 23 - A step-down transformer produces a voltage of 6.0...Ch. 23 - A step-up transformer has 30 turns on the primary...Ch. 23 - CE Predict/Explain An airplane flies level to the...Ch. 23 - CE You hold a circular loop of wire at the north...Ch. 23 - Prob. 76GPCh. 23 - Interstellar Magnetic Field The Voyager I...Ch. 23 - Prob. 78GPCh. 23 - BIO Electrognathography Computerized jaw tracking,...Ch. 23 - A rectangular loop of wire 24 cm by 72 cm is bent...Ch. 23 - Consider a rectangular loop of wire 6.8 cm by 9.2...Ch. 23 - Predict/Calculate A car with a vertical radio...Ch. 23 - The rectangular coils in a 355-tum generator are...Ch. 23 - A cubical box 22 cm on a side is placed in a...Ch. 23 - BIO MRI Scanner An MRI scanner is based on a...Ch. 23 - BIO Transcranial Magnetic Stimulation Transcranial...Ch. 23 - A magnetic field with the time dependence shown in...Ch. 23 - Prob. 88GPCh. 23 - Prob. 89GPCh. 23 - Prob. 90GPCh. 23 - BIO Blowfly Maneuvers Suppose the fly described in...Ch. 23 - Prob. 92GPCh. 23 - Predict/Calculate A single-turn rectangular loop...Ch. 23 - Prob. 94GPCh. 23 - Prob. 95GPCh. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - A car drives onto a loop detector and increases...Ch. 23 - A truck drives onto a loop detector and increases...Ch. 23 - Loop Detectors on Roadways Smart traffic lights...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Conceptual Example 23-6 Suppose the...Ch. 23 - Referring to Example 23-8 (a) What external force...Ch. 23 - Predict/Calculate Referring to Example 23-8...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Two sound speakers are separated by a distance d, each sounding a frequency f. An observer stands at one speake...
University Physics Volume 1
Write each number in decimal form.
35. 8.4 × 10–6
Applied Physics (11th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
3.68 A firefighting crew uses a water cannon that shoots water at 25.0 m/s at a fixed angle of 53.0° above the ...
University Physics (14th Edition)
Match each graph (E–H) with the extrasolar planet systems (A–D) from Figure 3. Explain your reasoning.
Extrasol...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You wish to move a rectangular loop of wire into a region of uniform magnetic field at a given speed so as to induce an emf in the loop. The plane of the loop must remain perpendicular to the magnetic field lines. In which orientation should you hold the loop while you move it into the region of magnetic field so as to generate the largest emf? (a) with the long dimension of the loop parallel to the velocity vector (b) with the short dimension of the loop parallel to the velocity vector (c) either way because the emf is the same regardless of orientationarrow_forwardSuppose a uniform magnetic field is perpendicular to the 81211-in. page of your homework and a rectangular metal loop lies on the page. The loops sides line up with the edges of the page. The magnetic field is changing with time as described by B = 3.75 103 t, where B is in teslas and t is in seconds. a. Is the magnetic field increasing or decreasing? b. Find the magnitude of the emf induced in the loop.arrow_forward(a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forward
- Shown below is a conducting rod that slides along metal rails. The apparatus is in a uniform magnetic field of strength 0.25 T, which is directly into the page. The rod is pulled to the right at a constant speed of 5.0 m/s by a force . The only significant resistance in the circuit comes from the 2.0resistor shown. (a) What is the emf induced in the circuit? (b) What is the induced current? Does it circulate clockwise or counter clockwise? (c) What is the magnitude of(d) What are the power output of and the power dissipated in the resistor?arrow_forwardA coil of area 0.100 m2 is rotating at 60.0 rev/s with the axis of rotation perpendicular to a 0.200-T magnetic field. (a) If the coil has 1 000 turns, what is the maximum emf generated in it? (b) What is the orientation of the coil with respect to the magnetic field when the maximum induced voltage occurs?arrow_forwardA time-dependent uniform magnetic field of magnitude B(t) is confined in a cylindrical region of radius R. A conducting rod of length 2D is placed in the region, as shown below. Show that the emf between the ends of the rod is given by dBdtDR2D2 . ( Hint: To find the between the ends, we need to integrate the electric field from one end to the other. To find the electric field, use Faraday’s law as “Ampere’s law for E”.)arrow_forward
- A metal bar of length 25 cm is placed perpendicular to a uniform magnetic field of strength 3 T. (a) Determine the induced emf between the ends of the rod when it is not moving, (b) Determine the emf when the rod is moving perpendicular to its Length and magnetic field with a speed of 50 cm/s.arrow_forward+ Motional EMF in a Conducting Rod When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod? Express your answer in volts per meter to at least three significant figures. In the figure, a conducting rod with length L = 27.0 cm moves in a magnetic field B of magnitude 0.400 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. (Figure 1) • View Available Hint(s) E = 3.50 V/m Submit Previous Answers Figure < 1 of 1 X Incorrect; Try Again; 5 attempts remaining Part D L Which point, a or b, is at higher potential? • View Available Hint(s) V B O a O barrow_forwardHow to solve this questionarrow_forward
- In (Figure 1), the rod moves with a speed of 1.3 m/s on rails 33.0 cm apart. The rod has a resistance of 2.6 . The magnetic field is 0.36 T, and the resistance of the U-shaped conductor is 21.0 at a given instant. ▼ Part A Calculate the induced emf. Express your answer to two significant figures and include the appropriate units. E = Submit Part B I = Submit Part C μA Calculate the current in the U-shaped conductor. Express your answer to two significant figures and include the appropriate units. F = Value Submit Request Answer μA Value Request Answer LuA Units Calculate the external force needed to keep the rod's velocity constant at that instant. Express your answer to two significant figures and include the appropriate units. Value Request Answer Units ? Units ? ?arrow_forwardA fixed 13.3-cmcm-diameter wire coil is perpendicular to a magnetic field 0.59 TT pointing up. In 0.19 ss , the field is changed to 0.27 TT pointing down. What is the average induced emf in the coil? Express your answer to two significant figures and include the appropriate units. E= ?arrow_forwardThe bolt of lightning depicted in the figure below passes 200 m from a 110-turn coil oriented as shown. If the current in the lightning bolt falls from 6.04 x 10° A to zero in 10.6 us, what is the average voltage induced in the coil? Assume the distance to the center of the coil determines the average magnetic field at the coil's position. Treat the lightning bolt as a long, vertical wire. 396 Your response differs from the correct answer by more than 100%. kV 200 m A coil of wire is shown so that the viewer looks down through center opening and the loops of wire are in the plane of the page. The radius of the coil is 0.800 m. The center of the coil is 200 m from a lightning strike. 0.800 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY