Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 34P
In Fig. 23-45, a small circular hole of radius R = 1.80 cm has been cut in the middle of an infinite, flat, nonconducting surface that has uniform charge density σ = 4.50 pC/m2. A z axis, with its origin at the hole’s center, is perpendicular to the surface. In unit-vector notation, what is the electric field at point P at z = 2.56 cm? (Hint: See Eq. 22-26 and use superposition.)
Figure 23-45 Problem 34.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
34 In Fig. 23-45, a small circular hole of radius R = 1.80 cm has
been cut in the middle of an infinite, flat, nonconducting surface
that has uniform charge density o= 4.50 pC/m?. A z axis, with its
origin at the hole's center, is perpendicular to the surface. In unit-
vector notation, what is the electric field at point Pat z = 2.56 cm?
Hint: See Eq. 22-26 and use superposition.)
%3D
R
A solid, insulating sphere of radius a 4 cm
has a uniform charge density and a total charge Q. Concentric with
this sphere there is a conducting spherical shell whose inner and outer
radii are b-10 cm and c- 15 cm respectively. The electric
field E, at a point r= 6 cm from the center is 1 x 10³ %/c
pointing radially inward, while the electric field Ez at a point
r = 20 cm from the center is 2 x 102/c pointing radially outward.
(a) Calculate the total charge in the insulating
sphere, in coulombs
(b) Calculate the charge dinner on the inner surface of the conducting shell at r= b.
(c) Calculate the charge qouter on the outer surface of the conducting shell at r-c..
insulator
conductor
In the figure a small circular hole of radius R= 1.48 cm has been cut in the middle of an
infinite, flat, nonconducting surface that has a uniform charge density o = 6.64 pC/m².
Az axis, with its origin at the hole's center, is perpendicular to the surface. What is the
magnitude of the electric field at point Pat z= 2.48 cm? (Hint: See equation
E =
2e0
Vz? + R
and use superposition.)
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
21. What is the thinnest film of MgF2 (n = 1.38) on glass that produces a strong reflection for orange light wi...
College Physics: A Strategic Approach (3rd Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Suppose you are culturing a microorganism that produces enough lactic acid to kill itself in a few days. a. How...
Microbiology: An Introduction
Write a generic Lewis structure for the halogens. Do the halogens tend to gain or lose electrons in chemical re...
Introductory Chemistry (6th Edition)
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardA charge distribution that is spherically symmetric but not uniform radially produces an electric field of magnitude E = Kr4, directed radially outward from the center of the sphere. Here r is the radial distance from that center, and K is a constant.What is the volume density r of the charge distribution?arrow_forwardIn the figure, a solid insulating sphere of radius a = 2.00 cm is concentric with a spherical conducting shell of inner radius b = 2.00 a and of outer radius c = 2.40 a. The sphere has a net charge of q₁ = +5.00 fC uniformly distributed throughout its volume; the shell has a net charge q2 = -91. What is the magnitude and direction of the electric field at radial distances (a) r = 0.50 a and (b) r = 2.30 a? (c) What is the net charge on the inner and outer surface of the shell? (d) Include a diagram of the Gaussian surfaces used in your calculations. a C barrow_forward
- (b) It was measured that the electric field at point P with magnitude 450 N/C just outside the outer surface of a hollow spherical conductor. The direction of the electric field is directed outward. The hollow spherical conductor has an inner radius of 15 cm and outer radius of 30 cm. After that, another particle with unknown charge Q is put at the center of the sphere, the electric field at point P is still directed outward but the magnitude of the electric field decreased down to 180 N/C. i. Calculate the net charge enclosed by the outer surface before particle Q was introduced ii. Calculate charge Q After charge Q was introduced, iii. Determine the charge on the inner surface of the conductor iv. Determine the charge on the outer surface of the conductorarrow_forwardA solid insulating sphere of radius a carries a net positive charge Q uniformly distributed throughout its volume. A conducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge -20. Using Gauss' law, find the electric field in regions 1, 2, 3 and 4. 4 3 2 a -2Q b Oarrow_forwardFigure (a) shows a narrow charged solid cylinder that is coaxial with a larger charged cylindrical shell. Both are nonconducting and thin and have uniform surface charge densities on their outer surfaces. Figure (b) gives the radial component E of the electric field versus radial distance r from the common axis. The vertical axis scale is set by E, = 3.3 × 10³ N/C. What is the linear charge density of the shell? (a) Number -E₂ r (cm) 6 Units 11.4 >arrow_forward
- In the figure a "semi-infinite" nonconducting rod (that is, infinite in one direction only) has uniform linear charge density À = 3.03 μC/m. Find (including sign) (a) the component of electric field parallel to the rod and (b) the component perpendicular to the rod at point P (R -24.5 m). (a) Number 0.041 (b) Number i 0.0037 R Units Units N/C or V/m # N/C or V/m #arrow_forwardAn isolated conductor has a net charge of +12.0 x 10 6 C and a cavity with a particle of chargeq = +3.50 x 10-6 C. What is the charge (a) on the cavity wall and (b) on the outer surface? (a) Number Units (b) Number Unitsarrow_forwardThe figure shows two nonconducting spherical shells fixed in place on anx axis. Shell 1 has uniform surface charge density 4.50 pC/m? on its outer surface and radius 0.500 cm, and shell 2 has uniform surface charge density -3.00 uC/m on its outer surface and radius 2.00 cm; the centers are separated by L 5.00 cm. Other than at X- w, where on the x axis is the net electric field equal to zero? Shell Shellarrow_forward
- Figure (a) shows a narrow charged solid cylinder that is coaxial with a larger charged cylindrical shell. Both are nonconducting and thin and have uniform surface charge densities on their outer surfaces. Figure (b) gives the radial component E of the electric field versus radial distance r from the common axis. The vertical axis scale is set by Es= 3.0 × 10³ N/C. What is the linear charge density of the shell? (a) Es 0 -Es Number i -12.68 r (cm) (b) Units nC/m 14.4arrow_forwardThe nucleus of a plutonium-239 atom contains 94 protons. Assume that the nucleus is a sphere with radius 6.64 fm and with the charge of the protons uniformly spread through the sphere. At the surface of the nucleus, what are the (a) magnitude and (b) direction (radially inward or outward) of the electric field produced by the protons?arrow_forwardThe figure shows, in cross section, three infinitely large nonconducting sheets on which charge is uniformly spread. The surface charge densities are o1 = 3.67 µC/m2, 02 = 4.78 µC/m2, and oz = -4.21 µC/m², and distance L = 1.80 cm. What are the (a) x and (b) y components of the net electric field at point P? L/2 2Larrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY