Concept explainers
A surface has the area vector
To find:
What is the flux of a uniform electric field through the area if the field
a.
b.
Answer to Problem 1Q
Solution:
the flux of a uniform electric field through the area if the field
Explanation of Solution
1) Concept
The electric flux through a surface is the amount of electric field that penetrates the surface. Electric flux through a given element with area vector
2) Formulae
Electric flux,
Where
A=Area of given surface
3) Given
Area vector,
Electric field vector in case a,
Electric field vector in case b,
4) Calculations
The electric flux through the given surface,
a. If
Plugging the values of
=
=
b. If
As dA does not have k components, the dot product of
Therefore,
Conclusion:
Electric flux through the given surface is found using the values of
Want to see more full solutions like this?
Chapter 23 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Anatomy & Physiology (2nd Edition)
Cosmic Perspective Fundamentals
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Fundamentals Of Thermodynamics
- The electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardA solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardA surface with area 2m2 in lies in the y-z plane. What is the flux through this area created by an electric field with components: Ex=24N/C Ey=30N/C Ez=16N/C 32 Nm2/C 60 Nm2/C 48 Nm2/C 29 Nm2/C 75 Nm2/Carrow_forward
- A thick insulating cylindircal shell of inner radius a=2.9R and outer radius b=6.8R has a uniform charge density p. PR What is the magnitude of the electric field at r=8.3 R ? Express your answer using one decimal place in units ofarrow_forwardAn electric field of magnitude E = 400 N/C points in the +x-direction for x > 0 and in the –x-direction for x < 0. A cylinder of length 30 cm and radius 10 cm has its center at the origin and its axis along the x-axis such that one end is at x = +15 cm and the other is at x = –15 cm. What is the flux through each end of the cylinder? Group of answer choices 0.25 kN·m2/C 0.13 MN·m2/C zero 1.3 kN·m2/C 13 N·m2/Carrow_forward?arrow_forward
- A thin, square, conducting plate 54.0 cm on a side lies in the xy plane. A total charge of 3.20 x 10-8 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. C/m² (b) Find the electric field just above the plate. magnitude N/C direction upward ◊ (c) Find the electric field just below the plate. magnitude N/C direction downward ↑arrow_forwardA conducting sphere of radius 0.01 m has a charge of 1 nC deposited in it. The magnitude of the electric field in N/C just inside the surface of the sphere is:arrow_forwardA metallic sphere is placed in the homogeneous electric field E in the figure. What is the strength of the electric field E0 at points A, B, C and D, which are very close to the surface of the sphere?arrow_forward
- helparrow_forwardA closed surface with dimensions a = b = 0.208 m and c = 0.3328 m is located as in the figure. The electric field throughout the region is nonuniform and defined by E (a + Bx²) î where x is in meters, a = 5 N/C, and 3 = 6 N/(C · m²). Y E Answer in units of C a x k What is the magnitude of the net charge enclosed by the surface? Answer in units of C. part 2 of 2 What is the sign of the charge enclosed in the surface?arrow_forwardA solid conducting sphere, which has a charge Q, =28Q and radius ra = 2.2R is placed inside a very thin spherical shell of radius rp = 6.7R and charge Q2 =14Q as shown in the figure below. Q2 ra Find the magnitude of the electric field at r=3.3. Express your answer using one decimal point in units of k where k = 4περarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning