Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 51P
SSM WWW In Fig. 23-56, a nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density ρ = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 45.0 fC is located at that center. What value should A have if the electric field in the shell (a ≤ r ≤ b) is to be uniform?
Figure 23-56 Problem 51.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
8) In Fig. 23-56, a nonconducting spherical shell of inner radius a= 2 cm and outer radius b= 2.4 cm has
(within its thickness) a positive uniform volume charge density p = 2.5nC/m³. In addition, a small ball
of charge q = +4.5 nC is located at that center. What are the magnitude and direction of the electric field
at radial distances (a) r = 1 cm, (b) r = 2.2 cm and (c) r = 3 cm?
|
9+
b
If a solid conducting sphere of radius 50.0 cm carries a total charge of 150 nC uniformly distributed throughout its volume. Find the (a) charge density of the sphere and (b) the magnitude of the electric field at r = 10 cm.
13/20
13)
The total negative charge carried by a solid conducting sphere of radius R is -Q.
This sphere is surrounded by an insulating shell of inner radius R and outer radius
2R. The uniform charge density of the insulating shell is p. What is the value of
p that will make the net charge of the entire system zero? Find the magnitude
of the electric field for R
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
The smell of 1, 5-pentanedithiol (C5H12S2), needs to be explained. Concept Introduction : The smell is due to o...
Living By Chemistry: First Edition Textbook
Explain all answer clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desig...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Charge Q is uniformly distributed in a sphere of radius R. (a) What fraction of the charge is contained within the radius r = R/2.00? (b) What is the ratio of the electric field magnitude at r =R/2.00 to that on the surface of the sphere?arrow_forwardFigure 22-53 Problem 30. *31 SSM ILW www In Fig. 22-54, a nonconducting rod of length L = 8.15 cm has a charge -q = -4.23 fC uniformly distributed along its length. (a) What is the linear charge density of the rod? What are the (b) magni- tude and (c) direction (relative to the positive direction of the x axis) of the electric field produced at point P, at distance a = 12.0 cm from the rod? What is the electric field magnitude produced at distance a =50 m by (d) the rod and (e) a particle of charge -q = -4.23 fC that we use to replace the rod? (At that distance, the rod "looks" like a particle.) -4 -x- Figure 22-54 Problem 31.arrow_forwardA long cylindrical conductor of radius r= 5.0cm has a uniform charge density of ơ1 := 4.0 HC on it surface. This cylinder is surrounded by a concentric conducting cylinder of radius r2:= 8.0cm με and uniform charge density of 2:=-2.5 on its surfacearrow_forward
- An isolated conductor has a net charge of +9.00 × 10 6 C and a cavity with a particle of charge q = +2.50 × 10-6 C. What is the charge (a) on the cavity wall and (b) on the outer surface? (a) Number i Units (b) Number i Unitsarrow_forwardA ring shaped conductor with a radius 3.00 cm has a uniform charge density of -120.0 nC/m and it lies on a horizontal table top. Find the magnitude and direction of the electric field it produces at a point 4.50 cm directly above its center. (p = 8.85 x 10-12 c²/Nm2, k = 9.00 x 109 Nm²/C²) 3.07 x 105 N/C, vertically downward 3.07 x 105 N/C, vertically upward 5.33 x 105 N/C, vertically downward 1.00 x 105 N/C, vertically upward 5.79 x 104 N/C, vertically downward 5.79 x 104 N/C, vertically upward 5.33 x 105 N/C, vertically upward 1.00 x 105 N/C, vertically downwardarrow_forward1) A charge Q is uniformly distributed throughout a nonconducting sphere of radius R. (a) What is the magnitude of the electric field at a distance R/2 from the center of the sphere? (b) What is the magnitude of the electric field at a distance 2R from the center of the sphere?arrow_forward
- A conducting spherical shell of inner radius a = 3 cm and outer radius b = 8 cm is charged by a total charge Q = 4.8T µc. A point charge q = 1.6T µc is placed at the center of the spherical shell.The surface charge density at the outer surface (in 10-3 c/m?) is:arrow_forward38 In Fig. 23-48a, an electron is shot directly away from a uni- formly charged plastic sheet, at speed v, = 2.0 x 10° m/s. The sheet is nonconducting, flat, and very large. Figure 23-48b gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? 12 -e t (ps) (a) (b) v (10 m/s)arrow_forwardA conducting sphere of radius 0.01 m has a charge of 1 nC deposited in it. The magnitude of the electric field in N/C just inside the surface of the sphere is:arrow_forward
- An isolated conductor has a net charge of +12.0 x 10 6 C and a cavity with a particle of chargeq = +3.50 x 10-6 C. What is the charge (a) on the cavity wall and (b) on the outer surface? (a) Number Units (b) Number Unitsarrow_forwardA solid non-conducting sphere of radius R carries a uniform charge density. At a radial distance r 1 = 6R the electric field has a magnitude E 0. What is the magnitude of the electric field at a radial distance r 2 = R/6 as a multiple of E 0 ?arrow_forwardCharge is distributed throughout a spherical shell of inner radius r1 and outer radius r2 with a volume density given by ρ = ρ0 r1/r, where ρ0 is a constant. Determine the electric field due to this charge as a function of r, the distance from the center of the shell.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY