College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 26P
* Draw ray diagrams to show how a convex lens can produce (a) a real image that is smaller than the object, (b) a real image larger than the object, and (c) a virtual image.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
College Physics
Ch. 23 - Review Question 23.1 A mirror is hanging on a...Ch. 23 - Review Question 23.2 You've found a concave...Ch. 23 - Review Question 23.3 You place a concave mirror on...Ch. 23 - Review Question 23.5 Where should you place an...Ch. 23 - Review Question 23.6 If we have a mathematical...Ch. 23 - Review Question 23.7 What is the main difference...Ch. 23 - Review Question 23.8 If a person with normal...Ch. 23 - Review Question 23.9 Why is saying that a...Ch. 23 - Where does the image of an object in a plane...Ch. 23 - Where does the image of an object that is s meters...
Ch. 23 - 3. A plane mirror produces an image of an object...Ch. 23 - A concave mirror can produce an image that is...Ch. 23 - 5. A convex mirror can produce an image that is...Ch. 23 - 6. A virtual image is the image produced
a. on as...Ch. 23 - 7. To see an image of an object that is enlarged,...Ch. 23 - To see an image of an object that is enlarged,...Ch. 23 - Prob. 9MCQCh. 23 - 10. When drawing images of objects produced by...Ch. 23 - 11. The focal length of a glass lens is 10 cm....Ch. 23 - 12. A microbiologist uses a microscope to look at...Ch. 23 - 13. The human eye works in a similar way to which...Ch. 23 - Which of the following changes will result in a...Ch. 23 - When we draw a ray passing through the center of a...Ch. 23 - 16. You run toward a building with walls of a...Ch. 23 - 17. A tiny plane mirror can produce an image...Ch. 23 - Explain how we derived the mirror equation.Ch. 23 - 19. Explain how we derived the thin lens...Ch. 23 - Explain the difference between a real and a...Ch. 23 - You stand in front of a fun house mirror. You see...Ch. 23 - 22. A bubble of air is suspended underwater. Draw...Ch. 23 - 23. A bubble of oil is suspended in water. Draw...Ch. 23 - A typical person underwater cannot focus clearly...Ch. 23 - In a video projector, the picture that appears on...Ch. 23 - The retina has a blind spot at the place where the...Ch. 23 - You need to teach your friend how to draw rays to...Ch. 23 - Place a pencil in front of a plane mirror so that...Ch. 23 - 3.* Use geometry to prove that the virtual image...Ch. 23 - * You are 1.8 m tall. Where should you place the...Ch. 23 - 5. * Two people are standing in front of a...Ch. 23 - 6. * Test an idea Describe an experiment that you...Ch. 23 - * Describe in detail an experiment to find the...Ch. 23 - * Explain with a ray diagram how (a) a concave...Ch. 23 - 9. * Test an idea Describe an experiment to test...Ch. 23 - * Test an idea Describe an experiment to test the...Ch. 23 - 11. * Tablespoon mirror You look at yourself in...Ch. 23 - * Use ray diagrams and the mirror equation to...Ch. 23 - Repeat Problem 23.12 for a convex mirror of focal...Ch. 23 - 14. Use ray diagrams and the mirror equation to...Ch. 23 - 15. * Sinking ships A legend says that Archimedes...Ch. 23 - 16. * EST Fortune-teller A fortune-teller looks...Ch. 23 - * You view yourself in a large convex mirror of...Ch. 23 - * Seeing the Moon in a mirror The Moons diameter...Ch. 23 - 19. * You view your face in a +20-cm focal length...Ch. 23 - 20. * Buying a dental mirror A dentist wants to...Ch. 23 - * Using a dental mirror A dentist examines a tooth...Ch. 23 - * If you place a point-like light source on the...Ch. 23 - 24. * You have a convex lens and a candle....Ch. 23 - 25. * Explain how to draw ray diagrams to locate...Ch. 23 - * Draw ray diagrams to show how a convex lens can...Ch. 23 - 27. * Use a ruler to draw ray diagrams to locate...Ch. 23 - 28. * Repeat the procedure described in Problem...Ch. 23 - 29. * Repeat the procedure described in Problem...Ch. 23 - 30 * Repeat the procedure in Problem 23.27 for the...Ch. 23 - * Partially covering lens Your friend thinks that...Ch. 23 - * Use ray diagrams to locate the images of the...Ch. 23 - 33. *Use ray diagrams to locate the images of the...Ch. 23 - Light passes through a narrow slit, and then...Ch. 23 - * Describe two experiments that you can perform to...Ch. 23 - * Shaving/makeup mirror You wish to order a mirror...Ch. 23 - 37. Dentist lamps Dentists use special lamps that...Ch. 23 - 38. * A large concave mirror of focal length 3.0m...Ch. 23 - 39 * EST Two convex mirrors on the side of a van...Ch. 23 - Camera You are using a camera with a lens of focal...Ch. 23 - 42. * Camera A camera with an 8.0-cm focal length...Ch. 23 - Video projector An LCD video projector (LCD stands...Ch. 23 - Photo of carpenter ant You take a picture of a...Ch. 23 - * Photo of secret document A secret agent uses a...Ch. 23 - 46. * Photo of landscape To photograph a landscape...Ch. 23 - * Make a rough graph of image distance versus...Ch. 23 - * Make a rough graph of linear magnification...Ch. 23 - * Repeat Problem 23.48 for a concave lens of...Ch. 23 - BIO Eye The image distance for the lens of a...Ch. 23 - BIO Lens-retina distance Fish and amphibians...Ch. 23 - BIO Nearsighted and farsighted (a) A woman can...Ch. 23 - * BIO Prescribe glasses A man who can produce...Ch. 23 - 54. * BIO Correcting vision A woman who produces...Ch. 23 - 55. * BIO Where are the far and near points? (a) A...Ch. 23 - * BIO Age-related vision changes A 35-year-old...Ch. 23 - 5.7 Looking at an aphid You examine an aphid on a...Ch. 23 - 58. * Reading with a magnifying glass You examine...Ch. 23 - 59. * Seeing an image with a magnifying glass A...Ch. 23 - * Stamp collector A stamp collector is viewing a...Ch. 23 - * You place a +20-cm focal length convex lens at a...Ch. 23 - 62. * You place a +25-cm focal length convex lens...Ch. 23 - * EST You place a candle 10 cm in front of a...Ch. 23 - 64. * EST Repeat Problem 23.63 for an object...Ch. 23 - ** You measure the focal length of a concave lens...Ch. 23 - 66.** Telescope A telescope consists of a +4.0-cm...Ch. 23 - 67. ** Yerkes telescope The world’s largest...Ch. 23 - * Telescope A telescope consisting of a +3.0-cm...Ch. 23 - 69. *** Design a telescope You are marooned on a...Ch. 23 - * Microscope A microscope has a +0.50-cm objective...Ch. 23 - 71. ** BIO Dissecting microscope A dissecting...Ch. 23 - *** Microscope A microscope has an objective lens...Ch. 23 - 73. ** Microscope Determine the lens separation...Ch. 23 - * Figure P23.75 shows three cases of the primary...Ch. 23 - Prob. 78GPCh. 23 - ** Two-lens camera A two-lens camera (see Figure...Ch. 23 - **You have a small spherically shaped bottle made...Ch. 23 - BIO Find a farsighted person. Design an experiment...Ch. 23 - 82. BIO Find a nearsighted person. Design an...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - Prob. 89RPPCh. 23 - Prob. 90RPPCh. 23 - Prob. 91RPPCh. 23 - Prob. 92RPPCh. 23 - Prob. 93RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Gray whales (Eschrichtius robustus) gather each winter near Baja California to give birth. How might such behav...
Campbell Biology (11th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
19. What is an ion?
Introductory Chemistry (6th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
52. Marissa’s spaceship approaches Joseph’s at a speed of 0.99c. As Marissa passes Joseph, they synchronize the...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What are the differences between real and virtual images? How can you tell (by looking) whether an image formed by a single lens or mirror is real or virtual?arrow_forwardA concave spherical mirror has a radius of curvature of magnitude 24.0 cm. (a) Determine the object position for which the resulting image is upright and larger than the object by a factor of 3.00. (b) Draw a ray diagram to determine the position of the image. (c) Is the image real or virtual?arrow_forwardConsider a pair of flat mirrors that are positioned so that they form an angle of 120 . An object is placed on the bisector between the minors. Construct a ray diagram as in Figure 2.4 to show how many images are formed. Figure 2.4 Two minors can produce multiple images. (a) Three images of a plastic lead are visible in the two minors at a right angle. (b) A single object reflecting from two minors at a right angle can produce three images, as shown by the greet, purple, and red images.arrow_forward
- An object 1.50 cm high is held 3.00 cm from a person’s cornea, and its reflected image is measured to be 0.167 cm high. (a) What is the magnification? (b) Where is the image? (c) Find the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.)arrow_forwardA 1.80-m-tall person stands 9.00 m in front of a large, concave spherical mirror having a radius of curvature of 3.00 m. Determine (a) the mirrors focal length, (b) the image distance, and (c) the magnification. (d) Is the image real or virtual? (e) Is the image upright or inverted?arrow_forwardSuppose you want to use a converging lens to project the image of two trees onto a screen. As show n in Figure CQ36.9, one tree is a distance x from the lens and the other is at 2x. You adjust the screen so that the near tree is in locus. It you now want the far tree to be in focus, do you move the screen toward or away from the lens?arrow_forward
- A lens is used to examine an object across a room. Is the lens probably being used as a simple magnifier? Explain in terms of focal length, the image, and magnification.arrow_forwardAn amoeba is 0.305 cm away from the 0.300 cm- focal length objective lens of a microscope. (a) Where is the image formed by the objective lens? (b) What is this image’s magnification? (C) An eyepiece with a 2.00-cm focal length is placed 20.0 cm from the objective. Where is the final image? (d) What angular magnification is produced by the eyepiece? (e) What is the overall magnification? (See Figure 2.39.)arrow_forward(i) When an image of an object is formed by a converging lens, which of the following statements is always true? More than one statement may be correct. (a) The image is virtual. (b) The image is real. (c) The image is upright. (d) The image is inverted. (e) None of those statements is always true. (ii) When the image of an object is formed by a diverging lens, which of the statements is always true?arrow_forward
- A jewelers lens of focal length 5.0 cm is used as a magnifier. With the lens held near the eye, determine (a) the angular magnification when the object is at the focal point of the lens and (b) the angular magnification when the image formed by the lens is at the near point of the eye (25 cm). (c) What is the object distance giving the maximum magnification?arrow_forwardConsider a pair of flat mirrors that are positioned so that they form an angle of 60 .. An object is placed on the bisector between the mirrors. Construct a ray diagram as in Figure 2.4 to show how many images ale formed. Figure 2.4 Two minors can produce multiple images. (a) Three images of a plastic lead are visible in the two minors at a right angle. (b) A single object reflecting from two minors at a right angle can produce three images, as shown by the greet, purple, and red images.arrow_forwardThe lens and mirror in Figure P36.77 are separated by d = 1.00 m and have focal lengths of +80.0 cm and -50.0 cm, respectively. An object is placed p = 1.00 m to the left of the lens as shown, (a) Locate the final image, formed by light that has gone through the lens twice. (b) Determine the overall magnification of the image and (c) state whether the image is upright or inverted.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY