Universe: Stars And Galaxies
Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 23, Problem 21Q
To determine

(a)

The distance that a single maser moves during a 4-month period.

To determine

(b)

The distance to the galaxy.

Blurred answer
Students have asked these similar questions
Using our example from the previous unit, let's try to determine the Hubble time for this example universe. You were given that a good representative galaxy receded at a speed of 4000 km/s and was found to be 20 Mpc away. With that in mind, what would the age of that universe be in years (aka what is that universe's Hubble time)? Go ahead and take the number of kilometers per Mpc to be approximately 3.1*10^19 km/Mpc. While this problem may look scary at first, this is really just bringing you full circle to one of the unit conversion problems you encountered at the beginning of this course.
The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass. 250 km s-1. Using Kepler's 3rd Law,
Another commonly calculated velocity in galactic dynamics is the escape velocity vesc, that is the minimum velocity a star must have in order to escape the gravitational field of the galaxy. (a) Starting from the work required to move a body over a distance dr against f show that the escape velocity from a point mass galaxy is vse = 2GM/r where r is your initial distance. (b) Since we know galaxies aren't actually point-masses, also show that vesc from r for a galaxy with a p(r) x r-² density profile is vse = 2v²(1+ ln(R/r)). Here you must assume that R is a cutoff radius at which the mass density is zero. (c) The largest velocity measured for any star in the solar neighbourhood, at r=8 kpc, is 440 km/s. Assuming that this star is still bound to the galaxy, find the lower limit (in kiloparsecs), to the cutoff radius R and a lower limit (in solar units) to the mass of the galaxy. Note the solar rotation velocity is 220 km/s.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage