Astronomy
Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
bartleby

Concept explainers

Textbook Question
Book Icon
Chapter 27, Problem 26E

Once again in this chapter, we see the use of Kepler’s third law to estimate the mass of supermassive black holes. In the case of NGC 4261, this chapter supplied the result of the calculation of the mass of the black hole in NGC 4261. In order to get this answer, astronomers had to measure the velocity of particles in the ring of dust and gas that surrounds the black hole. How high were these velocities? Turn Kepler’s third law around and use the information given in this chapter about the galaxy NGC 4261-the mass of the black hole at its center and the diameter of the surrounding ring of dust and gas-to calculate how long it would take a dust particle in the ring to complete a single orbit around the black hole. Assume that the only force acting on the dust particle is the gravitational force exerted by the black hole. Calculate the velocity of the dust particle in km/s.

Blurred answer
Students have asked these similar questions
The Schwarzschild radius, RS, of a black hole depends on its mass m, the speed of light c,and the gravitational constant G (with units m3/(kg s2)).Find a dimensionally correct expression for RS in terms of these quantities.Assuming that you found a dimensionally correct expression, can you be sure that this expression is, in fact, the correct expression for calculating the Schwarzschild radius? Explainyour answer.
Recently, astronomers have observed stars and other objects that orbit the center of the Milky Way Galaxy farther out than our Sun, but move around faster than we do. How do astronomers think such an observation can be explained? A, all these faster-moving objects must be escaping from the gravity of the Milky Way and will soon be lost to our Galaxy B. each of the faster-moving outer objects must be the result of a supernova explosion (giving them extra speed) C, it is the Sun that is moving too slowly because of a collision billions of years ago; the outer objects are really moving at the appropriate speed for their distance from the center D there must be a great deal of invisible dark matter outside the orbit of the Sun whose gravitational pull explains the faster motions we see out there E. no one can come up with any explanation for this puzzling observation
In 1999, scientists discovered a new class of black holes with masses 100 to 10,000 times the mass of our sun that occupy less space than our moon. Suppose that one of these black holes has a mass of 1x10^3 suns and a radius equal to one-half the radius of our moon. What is the density of the black hole in g/cm^3? The radius of our sun is 7.0x10^5 km, and it has an average density of 1.4x10^3 kg/m^3. The diameter of the moon is 2.16x10^3 miles.

Chapter 27 Solutions

Astronomy

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning