Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.3, Problem 2.12P
To determine
The value of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Problem 1.17 A particle is represented (at time=0) by the wave function
A(a²-x²). if-a ≤ x ≤+a.
0,
otherwise.
4(x, 0) = {
(a) Determine the normalization constant A.
(b) What is the expectation value of x (at time t = 0)?
(c) What is the expectation value of p (at time t = 0)? (Note that you cannot
get it from p = md(x)/dt. Why not?)
(d) Find the expectation value of x².
(e) Find the expectation value of p².
Question related to Quantum Mechanics : Problem 2.45
Problem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct
to three significant digits) of finding the particle outside the classically allowed region?
Hint: Classically, the energy of an oscillator is E = (1/2) ka² = (1/2) mo²a², where a
is the amplitude. So the “classically allowed region" for an oscillator of energy E extends
from –/2E/mw² to +/2E/mo². Look in a math table under “Normal Distribution" or
"Error Function" for the numerical value of the integral, or evaluate it by computer.
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- Problem 2.21 Suppose a free particle, which is initially localized in the range -a < x < a, is released at time t = 0: А, if -a < х <а, otherwise, (x, 0) = where A and a are positive real constants. 50 Chap. 2 The Time-Independent Schrödinger Equation (a) Determine A, by normalizing V. (b) Determine (k) (Equation 2.86). (c) Comment on the behavior of (k) for very small and very large values of a. How does this relate to the uncertainty principle? *Problem 2.22 A free particle has the initial wave function (x, 0) = Ae ax where A and a are constants (a is real and positive). (a) Normalize (x, 0). (b) Find V(x, t). Hint: Integrals of the form e-(ax?+bx) dx can be handled by "completing the square." Let y = Ja[x+(b/2a)], and note that (ax? + bx) = y? – (b²/4a). Answer: 1/4 e-ax?/[1+(2ihat/m)] 2a Y (x, t) = VI+ (2iħat/m) (c) Find |4(x, t)2. Express your answer in terms of the quantity w Va/[1+ (2hat/m)²]. Sketch |V|? (as a function of x) at t = 0, and again for some very large t.…arrow_forward1 W:0E *Problem 1.3 Consider the gaussian distribution p(x) = Ae¬^(x-a)² %3D where A, a, and A are positive real constants. (Look up any integrals you need.) (a) Use Equation 1.16 to determine A. (b) Find (x), (x²), and ơ. (c) Sketch the graph of p(x).arrow_forwardShow that a gaussian psi (x) = e ^(-ax^2) can be an eigenfunction of H(hat) for harmonic oscillator 1. Compute T(hat)*psi 2. Compute Vhat* psi - assume V operator is 1/2w^2x^2 3. Write out Hbar*psi and identify terms so Hber*psi=E*psi is true 4. From cancellation find a 5. insert back a to Schrodinger eq above and find Earrow_forward
- Question related to Quantum Mechanics : Problem 1.16arrow_forwardProblem 3.7 (a) Suppose that f(x) and g(x) are two eigenfunctions of an operator Q, with the same eigenvalue q. Show that any linear combination of f and g is itself an eigenfunction of Q. with eigenvalue q. (b) Check that f(x) = exp(x) and g(x) = exp(-x) are eigenfunctions of the operator d?/dx², with the same eigenvalue. Construct two linear combina- tions of f and g that are orthogonal eigenfunctions on the interval (-1, 1).arrow_forwardProblem 3.27 Sequential measurements. An operator Ä, representing observ- able A, has two normalized eigenstates 1 and 2, with eigenvalues a1 and a2, respectively. Operator B, representing observable B, has two normalized eigen- states ø1 and ø2, with eigenvalues b1 and b2. The eigenstates are related by = (3ø1 + 402)/5, 42 = (401 – 302)/5. (a) Observable A is measured, and the value aj is obtained. What is the state of the system (immediately) after this measurement? (b) If B is now measured, what are the possible results, and what are their probabilities? (c) Right after the measurement of B, A is measured again. What is the proba- bility of getting a¡? (Note that the answer would be quite different if I had told you the outcome of the B measurement.)arrow_forward
- Divergence theorem. (a) Use the divergence theorem to prove, v = -478 (7) (2.1) (b) [Problem 1.64, Griffiths] In case you're not persuaded with (a), try replacing r by (r² + e²)2 and watch what happens when ɛ → 0. Specifically, let 1 -V². 4л 1 D(r, ɛ) (2.2) p2 + g2 By taking note of the defining conditions of 8°(7) [(1) at r = 0, its value goes to infinity, (2) for all r + 0, its value is 0, and (3) the integral over all space is 1], demonstrate that 2.2 goes to 8*(F) as ɛ → 0.arrow_forwardDetermine the transmission coefficient for a rectangular barrier (same as Equation 2.127, only with +Vo in the region -a Vo (note that the wave function inside the barrier is different in the three cases). Partial answer: For Earrow_forwardProblem 3.30 Derive the transformation from the position-space wave function to the “energy-space” wave function using the technique of Example 3.9. Assume that the energy spectrum is discrete, and the potential is time-independent.arrow_forwardProblem 2.29 Analyze the odd bound state wave functions for the finite square well. Derive the transcendental equation for the allowed energies, and solve it graphically. Examine the two limiting cases. Is there always an odd bound state?arrow_forwardProblem #1 (Problem 5.3 in book). Come up with a function for A (the Helmholtz free energy) and derive the differential form that reveals A as a potential: dA < -SdT – pdV [Eqn 5.20]arrow_forwardA particle of mass in moving in one dimension is confined to the region 0 < 1 < L by an infinite square well potential. In addition, the particle experiences a delta function potential of strengtlh A located at the center of the well (Fig. 1.11). The Schrödinger equation which describes this system is, within the well, + A8 (x – L/2) v (x) == Ep(x), 0 < x < L. !! 2m VIx) L/2 Fig. 1.11 Find a transcendental equation for the energy eigenvalues E in terms of the mass m, the potential strength A, and the size L of the system.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON