Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- Problem 2.21 Suppose a free particle, which is initially localized in the range -a < x < a, is released at time t = 0: А, if -a < х <а, otherwise, (x, 0) = where A and a are positive real constants. 50 Chap. 2 The Time-Independent Schrödinger Equation (a) Determine A, by normalizing V. (b) Determine (k) (Equation 2.86). (c) Comment on the behavior of (k) for very small and very large values of a. How does this relate to the uncertainty principle? *Problem 2.22 A free particle has the initial wave function (x, 0) = Ae ax where A and a are constants (a is real and positive). (a) Normalize (x, 0). (b) Find V(x, t). Hint: Integrals of the form e-(ax?+bx) dx can be handled by "completing the square." Let y = Ja[x+(b/2a)], and note that (ax? + bx) = y? – (b²/4a). Answer: 1/4 e-ax?/[1+(2ihat/m)] 2a Y (x, t) = VI+ (2iħat/m) (c) Find |4(x, t)2. Express your answer in terms of the quantity w Va/[1+ (2hat/m)²]. Sketch |V|? (as a function of x) at t = 0, and again for some very large t.…arrow_forward6.2 Let the "uniform" ensemble of energy E be defined as the ensemble of all systems of the given type with energy less than E. The equivalence between (6.29) and (6.27) means that we should obtain the same thermodynamic functions from the "uniform" ensemble of energy E as from the microcanonical ensemble of energy E. In particular, the internal energy is E in both ensembles. Explain why this seemingly paradoxical result is true.arrow_forwardFor Problem 8.37, how do I find <1/r> within the integral? I think that the exponent function inside of P(r) is actually troublesome to finding what I need to find; however, I am not certain of what's really the correct procedure here.arrow_forward
- Problem 4.25 If electron, radius [4.138] 4πεmc2 What would be the velocity of a point on the "equator" in m /s if it were a classical solid sphere with a given angular momentum of (1/2) h? (The classical electron radius, re, is obtained by assuming that the mass of the electron can be attributed to the energy stored in its electric field with the help of Einstein's formula E = mc2). Does this model make sense? (In fact, the experimentally determined radius of the electron is much smaller than re, making this problem worse).arrow_forward2.4. A particle moves in an infinite cubic potential well described by: V (x1, x2) = {00 12= if 0 ≤ x1, x2 a otherwise 1/2(+1) (a) Write down the exact energy and wave-function of the ground state. (2) (b) Write down the exact energy and wavefunction of the first excited states and specify their degeneracies. Now add the following perturbation to the infinite cubic well: H' = 18(x₁-x2) (c) Calculate the ground state energy to the first order correction. (5) (d) Calculate the energy of the first order correction to the first excited degenerated state. (3) (e) Calculate the energy of the first order correction to the second non-degenerate excited state. (3) (f) Use degenerate perturbation theory to determine the first-order correction to the two initially degenerate eigenvalues (energies). (3)arrow_forwardO Consider the kinetic energy matrix elements between Hydrogen states (n' = 4, l', m'| |P|²| m -|n = 3, l, m), = for all the allowed l', m', l, m values. What kind of operator is the the kinetic energy (scalar or vector)? Use this to determine the following. For what choices of the four quantum numbers (l', m', l, m) can the matrix elements be nonzero (e.g. (l', m', l, m) (0, 0, 0, 0),...)? Which of these nonzero values can be related to each other (i.e. if you knew one of them, you could predict the other)? In this sense, how many independent nonzero matrix elements are there? (Note: there is no need to calculate any of these matrix elements.)arrow_forward
arrow_back_ios
arrow_forward_ios