Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.53P
(a)
To determine
The S-matrix.
(b)
To determine
The S-matrix for finite square well.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 3.
A pendulum is formed by suspending a mass m from the
ceiling, using a spring of unstretched length lo and spring constant k.
3.1. Using r and 0 as generalized coordinates, show that
1
L =
= 5m (i² + r²0?) + mgr cos 0 –
z* (r – lo)²
3.2. Write down the explicit equations of motion for your generalized coordinates.
1 W:0E
*Problem 1.3 Consider the gaussian distribution
p(x) = Ae¬^(x-a)²
%3D
where A, a, and A are positive real constants. (Look up any integrals you need.)
(a) Use Equation 1.16 to determine A.
(b) Find (x), (x²), and ơ.
(c) Sketch the graph of p(x).
Problem 4.25 If electron, radius
[4.138]
4πεmc2
What would be the velocity of a point on the "equator" in m /s if it were a classical
solid sphere with a given angular momentum of (1/2) h? (The classical electron radius,
re, is obtained by assuming that the mass of the electron can be attributed to the energy
stored in its electric field with the help of Einstein's formula E = mc2). Does
this model make sense? (In fact, the experimentally determined radius of the electron is
much smaller than re, making this problem worse).
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- Explain thisarrow_forwardAn electron in a region of length L is described by the normalized wavefunction ψ(x) = (2/L)1/2sin(2πx/L) in the range x = 0 to x = L; outside this range the wavefunction is zero. Evaluate ⟨x⟩. The necessary integrals will be found in the Resource section.arrow_forwardA small sphere slides without friction on a smooth wire bent in the shape of acycloid (figure 2) whose parametric equation is: x =a( ϴ− sinϴ )y = a (1 + cos ϴ) Remark: A parametric equation is composed of the (x, y) coordinates of the system and is counted as asingle equation even if the coordinates are separated. Get the following for the above statement: a) Restriction equations. b) Number of degrees of freedom c) The kinetic energy of the system. d) The potential energy of the system e) The equations that describe the motion of the systemarrow_forward
- Divergence theorem. (a) Use the divergence theorem to prove, v = -478 (7) (2.1) (b) [Problem 1.64, Griffiths] In case you're not persuaded with (a), try replacing r by (r² + e²)2 and watch what happens when ɛ → 0. Specifically, let 1 -V². 4л 1 D(r, ɛ) (2.2) p2 + g2 By taking note of the defining conditions of 8°(7) [(1) at r = 0, its value goes to infinity, (2) for all r + 0, its value is 0, and (3) the integral over all space is 1], demonstrate that 2.2 goes to 8*(F) as ɛ → 0.arrow_forwardThis is the solution to problem 7.36 . Could you explain the yellow marked place ? How we got <0|y|1> and <x^2>0 ?arrow_forwardStarting with the equation of motion of a three-dimensional isotropic harmonic ocillator dp. = -kr, dt (i = 1,2,3), deduce the conservation equation dA = 0, dt where 1 P.P, +kr,r,. 2m (Note that we will use the notations r,, r2, r, and a, y, z interchangeably, and similarly for the components of p.)arrow_forward
- I have the problem attached. I also have the formula that will help from the book. I also added some key ideas to help you and you will find that in the attachment of a page from a book, but on the top left. I wrote what you might possibly need. I just think i have my integrals wrong but I do know that the first integral goes to 2 pi.arrow_forwardφ(r, t) = Z d 3 r 0 ρ(r 0 , t) |r − r 0 | (1.4.35) In Eq. (1.4.35), the potential φ at position r is instantaneously determined by the charge density ρ at positions r 0 that are a finite distance away. Is this spooky action-at-a-distance? Does it worry you that causality seems to be violated? Information at r 0 seems to be instantly conveyed to the distant point r, even though nothing can travel faster than the speed of light.arrow_forwardDo the problem in 1st quandrant. Explain how you determined the sign of each derivative. Draw pictures to illustrate your reasoning.arrow_forward
- 2.4. A particle moves in an infinite cubic potential well described by: V (x1, x2) = {00 12= if 0 ≤ x1, x2 a otherwise 1/2(+1) (a) Write down the exact energy and wave-function of the ground state. (2) (b) Write down the exact energy and wavefunction of the first excited states and specify their degeneracies. Now add the following perturbation to the infinite cubic well: H' = 18(x₁-x2) (c) Calculate the ground state energy to the first order correction. (5) (d) Calculate the energy of the first order correction to the first excited degenerated state. (3) (e) Calculate the energy of the first order correction to the second non-degenerate excited state. (3) (f) Use degenerate perturbation theory to determine the first-order correction to the two initially degenerate eigenvalues (energies). (3)arrow_forward1.4 Show that the distance of closest approach d, in Rutherford scattering leading to an angle of deflection 0, is given by d=(1+ cosec 0,2). where p is detined in Fig. 1.6. (Use the conservation of energy and angular momentum.]arrow_forwardFor an Einstein solid with each of the following values of Nand q, list all of the possible microstates, count them, and verify formula 2.9. N = 3, q = 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON