(a)
Interpretation:
The reason as to why equation 21.13 is not applicable in the given case is to be explained.
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. Unit cell can be a cubic unit cell or hexagonal unit cell. The classification of a unit cell depends on the lattice site occupied by the atoms.
(b)
Interpretation:
The method used by a scientist to measure the lattice energy of
Concept introduction:
A unit cell of the crystal is the three-dimensional arrangement of the atoms present in the crystal. The unit cell is the smallest and simplest unit of the crystal which on repetition forms an entire crystal. Unit cell can be a cubic unit cell or hexagonal unit cell. The classification of a unit cell depends on the lattice site occupied by the atoms.
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
Physical Chemistry
- Although the gas used in an oxyacetylene torch (Figure 5.7) is essentially pure acetylene, the heat produced by combustion of one mole of acetylene in such a torch is likely not equal to the enthalpy of combustion of acetylene listed in Table 5.2. Considering the conditions for which the tabulated data are reported, suggest an explanation.arrow_forwardThe enthalpy change for the reaction of hydrogen gas with fluorine gas (o produce hydrogen fluoride is 542 U for the equation as written: mg src=Images/HTML_99425-10-41QAP_image001.jpg alt="" align="top"/> l type='a'> What is the enthalpy change per mole of hydrogen fluoride produced? Is the reaction exothermic or endothermic as written? What would be the enthalpy change for the reverse of the given equation (that 1%, for the decomposition of HF into its constituent elements)?arrow_forwardThe reaction of quicklime, CaO, with water produces slaked lime, Ca(OH)2, which is widely used in the construction industry to make mortar and plaster. The reaction of quicklime and water is highly exothermic: CaO(s)+H2O(l)Ca(OH)2(s)H=350kJmol1 (a) What is the enthalpy of reaction per gram of quicklime that reacts?. (b) How much heat, in kilojoules, is associated with the production of 1 ton of slaked lime?arrow_forward
- Does the standard enthalpy of formation of H2O(g) differ from H for the reaction 2H2(g)+O2(g)2H2O(g)?arrow_forwardThe heat of neutralization, Hneut, can be defined as the amount of heat released (or absorbed), q, per mole of acid (or base) neutralized. Hneut for nitric acid is -52 kJ/mol HNO3. At 27.3C, 50.00 mL of 0.743M HNO3 is neutralized by 1.00 M Sr(OH)2 in a coffee-cup calorimeter. (a) How many mL of Sr(OH)2 were used in the neutralization? (b) What is the final temperature of the resulting solution? (Use the assumptions in Question 11.)arrow_forwardUse a Born-Haber cycle (Sec. 5-13) to calculate the lattice energy of MgF2 using these thermodynamic data. Compare this lattice energy with that of SrF2, −2496 kJ/mol. Explain the difference in the values in structural terms.arrow_forward
- Calculate the standard molar enthalpy of formation of NO(g) from the following data: N2(g)+2O22NO2(g)H298=66.4kJ2NO(g)+O22NO2(g)H298=114.1kJarrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forwardWhat quantity of heat energy must have en applied to a block of aluminum weighing 42.7 g if the temperature of the block of aluminum increased by 15.2 °C? (See Table 10.1.)arrow_forward
- 9.99 The chemical reaction BBr3(g)+BCl3(g)BBr2Cl(g)+BCl2Br(g) , has an enthalpy change very close to zero. Using Lewis structures of the molecules, all of which have a central boron atom, provide a molecular-level description of why H for this reaction might be very small.arrow_forward9.72 Although it can be a nuisance when a laptop computer freezes up and needs to be rebooted, we accept that as somewhat inevitable. But clearly the need to occasionally reboot the control system for the power grid would not be acceptable. Use the web to research ways that engineers ensure the reliability of crucial systems like the control infrastructure of the grid, and write a paragraph summarizing the main strategies employed.arrow_forwardn Fig. 10.1, what kind of energy does ball A possess initially when at rest at the top of the hill? What kind of energies are involved as ball A moves down the hill? What kind of energy does ball A possess when it reaches the bottom of the hill and stops moving after hitting ball B? Where did the energy gained by ball B, allowing it to move up the hill, come from?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning