(a)
Interpretation:
Two concentration cells are made with
Concept Introduction :
An electrolytic cell featuring two half-cells that contain the same electrodes, but varying concentrations is referred to as a concentration cell. A concentration cell works to concentrate the more diluted solution while diluting the more concentrated solution. As the cell approaches equilibrium, a voltage is produced.
(b)
Interpretation:
Concept Introduction :
An electrolytic cell featuring two half-cells that contain the same electrodes, but varying concentrations is referred to as a concentration cell. A concentration cell works to concentrate the more diluted solution while diluting the more concentrated solution. As the cell approaches equilibrium, a voltage is produced.
(c)
Interpretation:
Two concentration cells are made with
Concept Introduction :
An electrolytic cell featuring two half-cells that contain the same electrodes, but varying concentrations is referred to as a concentration cell. A concentration cell works to concentrate the more diluted solution while diluting the more concentrated solution. As the cell approaches equilibrium, a voltage is produced.
(d)
Interpretation:
Molarity of NaOH is to be determined if the addition of
Concept Introduction :
An electrolytic cell featuring two half-cells that contain the same electrodes, but varying concentrations is referred to as a concentration cell. A concentration cell works to concentrate the more diluted solution while diluting the more concentrated solution. As the cell approaches equilibrium, a voltage is produced.
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
Chemistry: The Molecular Nature of Matter and Change
- The cell potential of the following cell at 25C is 0.480 V. ZnZn2+(1M)H+(testsolution)H2(1atm)Pt What is the pH of the test solution?arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which I(aq) is in contact with I2(s) and an electrode in which a chromium strip dips into a solution of Cr3(aq)?arrow_forwardAn electrochemical cell is made by placing a zinc electrode in 1.00 L of 0.200 M ZnSO4 solution and a copper electrode in 1.00 L of 0.0100 M CuCl2 solution. a What is the initial voltage of this cell when it is properly constructed? b Calculate the final concentration of Cu2+ in this cell if it is allowed to produce an average current of 1.0 amp for 225 s.arrow_forward
- An electrochemical cell consists of a nickel metal electrode immersed in a solution with [Ni2+] = 1.0 M separated by a porous disk from an aluminum metal electrode immersed in a solution with [Al3+] = 1.0 M. Sodium hydroxide is added to the aluminum compartment, causing Al(OH)3(s) to precipitate. After precipitation of Al(OH)3 has ceased, the concentration of OH is 1.0 104 M and the measured cell potential is 1.82 V. Calculate the Ksp value for Al(OH)3. Al(OH)3(s)Al3+(aq)+3OH(aq)Ksp=?arrow_forwardAn electrochemical cell is made by placing an iron electrode in 1.00 L of 0.15 M FeSO4 solution and a copper electrode in 1.00 L of 0.040 M CuSO4 solution. a What is the initial voltage of this cell when it is properly constructed? b Calculate the final concentration of Cu2+ in this cell if it is allowed to produce an average current of l.25 amp for 375 s.arrow_forwardAn aqueous solution of an unknown salt of vanadium is electrolyzed by a current of 2.50 amps for 1.90 hours. The electroplating is carried out with an efficiency of 95.0%, resulting in a deposit of 2.850 g of vanadium. a How many faradays are required to deposit the vanadium? b What is the charge on the vanadium ions (based on your calculations)?arrow_forward
- An electrochemical cell consists of a silver metal electrode immersed in a solution with [Ag+] = 1.0 M separated by a porous disk from a copper metal electrode. If the copper electrode is placed in a solution of 5.0 M NH3 that is also 0.010 M in Cu(NH3)42+, what is the cell potential at 25C? Cu2+(aq)+4NH3(aq)Cu(NH3)42+(aq)K=1.01013arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forwardA galvanic cell is based on the following half-reactions: In this cell, the copper compartment contains a copper electrode and [Cu2+] = 1.00 M, and the vanadium compartment contains a vanadium electrode and V2+ at an unknown concentration. The compartment containing the vanadium (1.00 L of solution) was titrated with 0.0800 M H2EDTA2, resulting in the reaction H2EDTA2(aq)+V2+(aq)VEDTA2(aq)+2H+(aq)K=? The potential of the cell was monitored to determine the stoichiometric point for the process, which occurred at a volume of 500.0 mL H2EDTA2 solution added. At the stoichiometric point, was observed to be 1 .98 V. The solution was buffered at a pH of 10.00. a. Calculate before the titration was carried out. b. Calculate the value of the equilibrium constant, K, for the titration reaction. c. Calculate at the halfway point in the titration.arrow_forward
- Calculate the standard cell potential of the following cell at 25C. Cr(s)Cr3(aq)Hg22(aq)Hg(l)arrow_forwarda Calculate the equilibrium constant for the following reaction at 25C. Sn(s)+Pb2+(aq)Sn2+(aq)+Pb(s) The standard cell potential of the corresponding voltaic cell is 0.010 V. b If an excess of tin metal is added to 1.0 M Pb2+, what is the concentration of Pb2+ at equilibrium?arrow_forwardAn electrochemical cell consists of a standard hydrogen electrode and a copper metal electrode. If the copper electrode is placed in a solution of 0.10 M NaOH that is saturated with Cu(OH)2, what is the cell potential at 25C? [For Cu(OH)2, Ksp = 1.6 1019.]arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning