(a)
Interpretation:
Balanced equation for the spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An
(a)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since silver has positive electrode potential then nickel so reduction occurs at silver electrode and oxidation occurs at nickel electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor, if required and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
(b)
Interpretation:
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(b)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since hydrogen has higher electrode potential then magnesium so reduction occurs at hydrogen electrode and oxidation occurs at magnesium electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor, if required and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
(c)
Interpretation:
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(c)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since iron has higher electrode potential then tin so reduction occurs at iron electrode and oxidation occurs at tin electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
(d)
Interpretation:
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reaction given as follows:
should be written.
Concept introduction:
Electrode potential is capacity of electrode to gain or lose electron when it is dipped in solution of its own ions. The absolute magnitude of cell potential of an electrode cannot be determined as oxidation half reaction or reduction half reaction cannot occur alone. It can be measured by taking a reference electrode. The reference electrode used is standard hydrogen electrode.
Oxidation potential is specific term used for cell potential if oxidation occurs at electrode and reduction potential is the term used if reduction occurs at electrode, with respect to standard hydrogen electrode.
An electrochemical cell is formed of two electrodes that is two half cells. One of these electrodes has higher electrode potential than the other due to which potential difference is created and current flows.
(d)
Answer to Problem 12SSC
Therefore, balanced equation for spontaneous cell reaction is
Explanation of Solution
Balanced equation for spontaneous cell reaction that occurs in a cell with the reduction half reactions can be determined as follows:
Step1: The two half reactions are identified as follows:
As per the latest convention of sign, the electrode at which reduction occurs with respect to standard hydrogen electrode is assigned positive sign or has higher reduction potential and the electrode at which oxidation occurs with respect to standard hydrogen electrode is assigned negative sign or has lower reduction potential.
Step 2: The electrode potential for two half reactions are compared.
As per table 20.1, standard potential for the half cell reactions are as follows:
Since platinum has positive electrode potential then lead so reduction occurs at platinum electrode and oxidation occurs at lead electrode.
Step 3: Write oxidation half reaction in reverse manner and retain reduction half reaction as follows:
Step 4: Balance electrons in two half reaction by multiplying each by a factor and then adding them.
Therefore, balanced equation for spontaneous cell reaction is
Chapter 20 Solutions
Chemistry: Matter and Change
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Chemistry: Structure and Properties (2nd Edition)
Human Anatomy & Physiology (2nd Edition)
Introductory Chemistry (6th Edition)
Biological Science (6th Edition)
Cosmic Perspective Fundamentals
- Don't used Ai solutionarrow_forwardBenzene-toluene equilibrium is often approximated as αBT = 2.34. Generate the y-x diagram for this relative volatility. Also, generate the equilibrium data using Raoult’s law, and compare your results to these.arrow_forwardGiven the most probable macrostate: s/k (K) Populations 300 4 200 8 100 16 0 32 Indicate how to demonstrate that the population of the levels is consistent with the Boltzmann distribution.arrow_forward
- Rank the following components in order of decreasing volatility: butane, n-pentane, iso-pentene (e.g., 3-methyl-1-butene), isoprene, pentanol? Briefly explain your answer.arrow_forwardViscosity of a liquid related to the activation energy.arrow_forwardVibrational contributions to internal energy and heat capacity1) are temperature independent2) are temperature dependentarrow_forward
- The approximation of calculating the partition function by integration instead of the summation of all the energy terms can only be done if the separation of the energy levels is much smaller than the product kT. Explain why.arrow_forwardExplain the meaning of: the electron partition function is equal to the degeneracy of the ground state.arrow_forward28. For each of the following species, add charges wherever required to give a complete, correct Lewis structure. All bonds and nonbonded valence electrons are shown. a. b. H H H H H :0-C-H H H H-C-H C. H H d. H-N-0: e. H H-O H-O H B=0 f. H—Ö—Ñ—Ö—H Norton Private Barrow_forward
- At 0oC and 1 atm, the viscosity of hydrogen (gas) is 8.55x10-5 P. Calculate the viscosity of a gas, if possible, consisting of deuterium. Assume that the molecular sizes are equal.arrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY