Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 68AP
Interpretation Introduction

Interpretation:

The nuclear binding energy per nucleon for the given nucleus is to be calculated.

Concept introduction:

The nuclear binding energy is calculated by using the following relation:

ΔE=(Δm)c2

Here, Δm is the mass defect and c is the speed of light.

Mass defect is defined as the difference between the given mass and predicted mass. Thus, the formula for the mass defect is as follows:

Δm= given mass  predicted mass

Here, Δm is the mass defect.

Expert Solution & Answer
Check Mark

Answer to Problem 68AP

Solution:

1.040×1012 J/nucleon.

1.111×1012 J/nucleon.

1.199×1012 J/nucleon.

1.410×1012 J/nucleon.

Explanation of Solution

a)The mass of 510B is 10.0129  amu.

In the given nucleus, 510B, the number of protons and neutrons is 5 each.

The mass of 5 11H atoms is as follows:

Mass of 5 11H =5×mass of hydrogen=5×1.007825 amu=5.039125 amu.

Mass of 5 neutrons =5×mass of neutron=5×1.008665 amu=5.043325 amu.

The predicted mass of 510B is iscalculated as follows:

Predicted mass = mass of 5 11H+mass of 5 neutrons=5.039125 amu+5.043325 amu=10.08245  amu

The mass defect is calculated by using the relation given below:

Δm= given mass  predicted mass

Here, Δm is the mass defect.

Substitute 10.08245  amu for the predicted mass and 10.0129  amu for the given mass.

Δm=(10.0129  amu)(10.08245  amu)=0.06955amu.

The value of mass defect is converted into kg by using the following relation:

1 kg=6.0221418×1026 amu(0.06955 amu×1 kg6.022×1026 amu)=1.1549×1028kg

The nuclear binding energy is calculated by the relation given below:

ΔE=(Δm)c2

Here, Δm is the mass defect and c is the speed of light.

Substitute 1.1549×1028Kg for Δm and 3.00×108 m/s for c in the above equation as follows:

ΔE=(1.1549×1028Kg)(3.00×108 m/s)2=10.39×1012 Kg.m2/s2=1.039×1011 J 

The nuclear binding energy per nucleon is calculated as follows:

Nuclear binding energytotal number of nucleons

The number of nucleons is defined as the sum of the protons and neutrons.

Thus, 10 nucleons are present in the nucleus of 510B.

Substitute 1.039×1011 J  for the nuclear binding energy and 10 nucleons for the total number of nucleons,

1.039×1011 J  10 nucleons=1.039×1012 J/nucleon1.040×1012 J/nucleon

Therefore, the nuclear binding energy per nucleon is 1.040×1012 J/nucleon

b)The mass of 511B is 11.009305 amu.

In the given nucleus, 511B, the number of protons and neutrons are 5 and 6, respectively.

The mass of 5 11H atoms is calculated as follows:

Mass of 5 11H =5×mass of hydrogen=5×1.007825 amu=5.039125 amu.

Mass of 6 neutrons =6×mass of neutron=6×1.008665 amu=6.05199 amu.

The predicted mass of 511B is calculated as follows:

Predicted mass = mass of 5 11H+mass of 6 neutrons=5.039125 amu+6.05199 amu.=11.09111  amu

The mass defect is calculated by using the relation given below:

Δm= given mass - predicted mass

Here, Δm is the mass defect.

Substitute 11.09111  amu for the predicted mass and 11.009305 amu for the given mass,

Δm=(11.009305 amu)(11.09111  amu)=0.08181amu.

The value of mass defect is converted into kg by using the following relation:

1 Kg=6.0221418×1026 amu(0.08181 amu×1 Kg6.022×1026 amu)=1.3585×1028Kg

The nuclear binding energy is calculated by the relation given below:

ΔE=(Δm)c2

Here, Δm is the mass defect and c is the speed of light.

Substitute 1.3585×1028Kg for Δm and 3.00×108 m/s for c in the above equation as follows:

ΔE=(1.3585×1028Kg)(3.00×108 m/s)2=12.226×1012 Kg.m2/s2=1.2226×1011 J 

The nuclear binding energy per nucleon is calculated as follows:

Nuclear binding energytotal number of nucleons

The number of nucleons is defined as the sum of the protons and neutrons.

Thus, 11 nucleons are present in the nucleus of 511B.

Substitute 1.2226×1011 J  for the nuclear binding energy and 11 nucleons for the total number of nucleons as:

1.2226×1011 J   11 nucleons=1.111×1012 J/nucleon

Therefore, the nuclear binding energy per nucleon is 1.111×1012 J/nucleon

c)The mass of 714N is 14.003074 amu.

In the given nucleus, 714N, the number of protons and neutrons are 7 and 7, respectively.

The mass of 7 11H atoms is calculated as follows:

Mass of 7 11H =7×mass of hydrogen=7×1.007825 amu=7.05477 amu.

Mass of 7 neutrons =7×mass of neutron=7×1.008665 amu=7.060655 amu.

The predicted mass of 714N is calculated as follows:

Predicted mass = mass of 7 11H+mass of 7 neutrons=7.05477 amu+7.060655 amu.=14.11542  amu

The mass defect is calculated by using the relation given below:

Δm= given mass  predicted mass

Here, Δm is the mass defect.

Substitute 14.11542  amu for predicted mass and 14.003074 amu for given mass as:

Δm=(14.003074 amu)(14.11542  amu)=0.112346 amu.

The value of mass defect is converted into kg by using the following relation:

1 Kg=6.0221418×1026 amu(0.112346 amu×1 Kg6.022×1026 amu)=1.8655×1028Kg

The nuclear binding energy is calculated by the relation given below:

ΔE=(Δm)c2

Here, Δm is the mass defect and c is the speed of light.

Substitute 1.8655×1028Kg for Δm and 3.00×108 m/s for c in the above equation as follows:

ΔE=(1.8655×1028Kg)(3.00×108 m/s)2=16.789×1012 Kg.m2/s2=1.6789×1011 J 

The nuclear binding energy per nucleon is calculated as follows:

Nuclear binding energytotal number of nucleons

The number of nucleons is defined as the sum of the protons and neutrons.

Thus, 14 nucleons are present in the nucleus of 714N.

Substitute 1.6789×1011 J  for the nuclear binding energy and 14 nucleons for the total number of nucleons as:

1.6789×1011 J   14 nucleons=1.199×1012 J/nucleon

Therefore, the nuclear binding energy per nucleon is 1.199×1012 J/nucleon

d)The mass of 2656Fe is 55.93494 amu.

In the given nucleus, 2656Fe, the number of protons and neutrons are 26 and 30, respectively.

The mass of 26 11H atoms is as follows:

Mass of 26 11H =26×mass of hydrogen=26×1.007825 amu=26.20345 amu.

Mass of 30 neutrons =30×mass of neutron=30×1.008665 amu=30.25995 amu.

The predicted mass of 2656Fe is calculated as follows:

Predicted mass = mass of 26 11H+mass of 30 neutrons=26.20345 amu+30.25995 amu.=56.4634  amu

The mass defect is calculated by using the relation given below:

Δm= given mass  predicted mass

Here, Δm is the mass defect.

Substitute 56.4634  amu for the predicted mass and 55.93494 amu for the given mass.

Δm=(55.93494 amu)(56.4634  amu)=0.52846 amu.

The value of mass defect is converted into kg by using the following relation:

1 Kg=6.0221418×1026 amu(0.52846 amuamu×1 Kg6.022×1026 amu)=8.7754×1028Kg

The nuclear binding energy is calculated by the relation given below:

ΔE=(Δm)c2

Here, Δm is the mass defect and c is the speed of light.

Substitute 8.7754×1028Kg for Δm and 3.00×108 m/s for c in the above equation as follows:

ΔE=(8.7754×1028Kg)(3.00×108 m/s)2=78.9786×1012 Kg.m2/s2=7.89786×1011 J 

The nuclear binding energy per nucleon is calculated as follows:

Nuclear binding energytotal number of nucleons

The number of nucleons is defined as the sum of the protons and neutrons.

Thus, 56 nucleons are present in the nucleus of 2656Fe.

Substitute 7.89786×1011 J  for the nuclear binding energy and 56 nucleons for the total number of nucleons,

7.89786×1011 J    56 nucleons=1.410×1012 J/nucleon

Therefore, the nuclear binding energy per nucleon is 1.410×1012 J/nucleon.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Indicate how to find the energy difference between two levels in cm-1, knowing that its value is 2.5x10-25 joules.
The gyromagnetic ratio (gamma) for 1H is 2.675x108 s-1 T-1. If the applied field is 1,409 T what will be the separation between nuclear energy levels?
Chances Ad ~stract one 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $4th total Statistical pro 21 total 2 H A 2H 래 • 4H totul < 3°C-H werkest bund - abstraction he leads to then mo fac a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? рос 6 -વા J Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl

Chapter 20 Solutions

Chemistry

Ch. 20.2 - Prob. 3CPCh. 20.2 - Prob. 4CPCh. 20.3 - Prob. 1PPACh. 20.3 - Prob. 1PPBCh. 20.3 - Practice Problem CONCEPTUALIZE The Think About It...Ch. 20.3 - Prob. 1CPCh. 20.3 - Prob. 2CPCh. 20.3 - Prob. 3CPCh. 20.4 - Practice Problem ATTEMPT Determine the age of a...Ch. 20.4 - Practice Problem BUILD How much 206 Pb will be in...Ch. 20.4 - Prob. 1PPCCh. 20.4 - Prob. 1CPCh. 20.4 - Prob. 2CPCh. 20.5 - Prob. 1PPACh. 20.5 - Prob. 1PPBCh. 20.5 - Practice Problem CONCEPTUALIZE One of the major...Ch. 20 - Prob. 1QPCh. 20 - Prob. 2QPCh. 20 - Prob. 3QPCh. 20 - Prob. 4QPCh. 20 - Prob. 5QPCh. 20 - Prob. 6QPCh. 20 - Prob. 7QPCh. 20 - Prob. 8QPCh. 20 - 20.9 why is it impossible for the isotope to...Ch. 20 - Prob. 10QPCh. 20 - Prob. 11QPCh. 20 - Prob. 12QPCh. 20 - Prob. 13QPCh. 20 - For each pair of isotopes listed, predict which...Ch. 20 - Prob. 15QPCh. 20 - Prob. 16QPCh. 20 - Prob. 17QPCh. 20 - Prob. 18QPCh. 20 - Prob. 19QPCh. 20 - Prob. 20QPCh. 20 - Prob. 21QPCh. 20 - Prob. 22QPCh. 20 - Prob. 23QPCh. 20 - Prob. 24QPCh. 20 - Prob. 25QPCh. 20 - Prob. 26QPCh. 20 - Prob. 27QPCh. 20 - Prob. 28QPCh. 20 - Prob. 29QPCh. 20 - Prob. 30QPCh. 20 - Prob. 31QPCh. 20 - Prob. 32QPCh. 20 - Prob. 33QPCh. 20 - Prob. 34QPCh. 20 - Prob. 35QPCh. 20 - Prob. 36QPCh. 20 - Prob. 37QPCh. 20 - Prob. 38QPCh. 20 - Prob. 39QPCh. 20 - Prob. 40QPCh. 20 - Prob. 41QPCh. 20 - Prob. 42QPCh. 20 - Prob. 43QPCh. 20 - Prob. 44QPCh. 20 - Prob. 45QPCh. 20 - Prob. 46QPCh. 20 - Prob. 47QPCh. 20 - Prob. 48QPCh. 20 - Prob. 49QPCh. 20 - Prob. 50QPCh. 20 - Prob. 51QPCh. 20 - Prob. 52QPCh. 20 - Prob. 53QPCh. 20 - Prob. 54QPCh. 20 - Prob. 55QPCh. 20 - Prob. 56QPCh. 20 - Prob. 57QPCh. 20 - Prob. 58QPCh. 20 - Prob. 59QPCh. 20 - Prob. 60QPCh. 20 - Prob. 61QPCh. 20 - Prob. 62APCh. 20 - Prob. 63APCh. 20 - Prob. 64APCh. 20 - Prob. 65APCh. 20 - Prob. 66APCh. 20 - Prob. 67APCh. 20 - Prob. 68APCh. 20 - Prob. 69APCh. 20 - Prob. 70APCh. 20 - Prob. 71APCh. 20 - Prob. 72APCh. 20 - Prob. 73APCh. 20 - Prob. 74APCh. 20 - Prob. 75APCh. 20 - Prob. 76APCh. 20 - Prob. 77APCh. 20 - Prob. 78APCh. 20 - Prob. 79APCh. 20 - Prob. 80APCh. 20 - Prob. 81APCh. 20 - Prob. 82APCh. 20 - Prob. 83APCh. 20 - Prob. 84APCh. 20 - Prob. 85APCh. 20 - Prob. 86APCh. 20 - Prob. 87APCh. 20 - Prob. 88APCh. 20 - Prob. 89APCh. 20 - Prob. 90APCh. 20 - Prob. 91APCh. 20 - Prob. 92APCh. 20 - Prob. 93APCh. 20 - Prob. 94APCh. 20 - Prob. 95APCh. 20 - Prob. 96APCh. 20 - Prob. 97APCh. 20 - Prob. 98APCh. 20 - Prob. 99APCh. 20 - Prob. 100APCh. 20 - Prob. 101APCh. 20 - Prob. 102APCh. 20 - Prob. 103APCh. 20 - Prob. 1SEPPCh. 20 - Prob. 2SEPPCh. 20 - Prob. 3SEPPCh. 20 - Prob. 4SEPP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning