Interpretation:
The energy released (in kJ) for the given decays and the heat released by the decay of
are to be calculated.
Concept introduction:
The amount of a particular radioactive isotope left after time t is given as:
Here,
is the rate constant for the radioactive decay,
Nearly all radioactive decays are of first order and the rate constant is given as:
Here,
is the half -life of the radioactive substance.
The energy during the decay of a radioactive substance is given as:
Here,
is the amount of energy released,
is the mass defect which occurs during the course of decay and c is the speed of the light.
The mass defect (
) is given as the difference of total atomic mass of the product and the reactant in the balanced radioactive reaction.
Answer to Problem 100AP
Solution:
Explanation of Solution
a) The energy released (in joules) in each of the following two decays
The decay of
The decay of
Mass of
is
Mass of
is
Mass of electron is
Mass of
is
The balanced reaction for
decay is given as follows:
Now, the mass defect
is calculated as follows:
Substitute the values of masses in the above expression.
Now, it is known that
Thus, the conversion factor for this is
Hence, the mass defect can be converted to kilogram unit by using the above conversion factor as follows:
Now, the energy during the decay of a radioactive substance is given as:
Substitute the values of speed of light and energy in the above expression.
Thus, the energy released during the decay of
is
The balanced reaction for
decay is given as follows:
Now, the mass defect
is calculated as follows:
Substitute the values of masses in the above expression.
Now, it is known that
Thus, the conversion factor is
Hence, the mass defect can be converted to kilogram unit by using the above conversion factor as follows:
The energy during the decay of a radioactive substance is given as follows:
Substitute the values of energy and mass defect in the above expression.
Thus, the energy released during the decay of
is
b) The number of moles of
that will decay in a year, starting with 1 mole of
Initial time,
Final time,
It is also known that the rate constant for the radioactive decay is given as follows:
Substitute the value of half-life.
Now, number of moles of
decaying in one year can be calculated as follows:
Here,
is the final number of moles.
Substitute the values of
in the above expression.
Thus, the number of moles that has decayed in one year is calculated as follows:
So, moles of
decayed
c) The amount of heat released (in kJ) corresponding to the
It is known that half- life of
is much shorter than that of
formed from
is converted to
Now, it is known that one mole of particles is equivalent to Avogadro’s number.
Hence, the conversion factor is
Thus, by using the above conversion, the number of nuclei decayed in one year can be calculated as follows:
Now, the total energy released during the decay given in part (a) is as follows:
This energy corresponds to the energy released by one nuclei.
Hence, the conversion factor is
Moreover, it is also known that one kilojoules is equivalent to thousand joules.
Hence, the conversion factor is
Thus, by using the above conversion factor, the energy released in one year can be calculated as follows:
Hence, the heat released by the decay of
Want to see more full solutions like this?
Chapter 20 Solutions
Chemistry
- What is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forwardLast Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forward
- this is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward2B: The retrosynthetic cut below provides two options for a Suzuki coupling, provide the identities of A, B, C and D then identify which pairing is better and justify your choice. O₂N. Retro-Suzuki NO2 MeO OMe A + B OR C + Darrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning