Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 20, Problem 100AP
Interpretation Introduction

Interpretation:

The energy released (in kJ) for the given decays and the heat released by the decay of 90Sr

are to be calculated.

Concept introduction:

The amount of a particular radioactive isotope left after time t is given as:

lnNtNo= kt

Here, k

is the rate constant for the radioactive decay, Nt is the amount of it left after time t, and N0 is the initial amount of the sample.

Nearly all radioactive decays are of first order and the rate constant is given as:

k = 0.693t1/2

Here, t1/2

is the half -life of the radioactive substance.

The energy during the decay of a radioactive substance is given as:

ΔE=(Δm)c2

Here, ΔE

is the amount of energy released, Δm

is the mass defect which occurs during the course of decay and c is the speed of the light.

The mass defect (Δm

) is given as the difference of total atomic mass of the product and the reactant in the balanced radioactive reaction.

Expert Solution & Answer
Check Mark

Answer to Problem 100AP

Solution:

5.59 × 10-15 J and 2.84 × 10-13 J

0.024 mol .

4.26 × 106 kJ

Explanation of Solution

a) The energy released (in joules) in each of the following two decays

The decay of 90Sr as follows:

9038Sr  9039Y + 01β     (t1/2= 28.1 year)

The decay of 90Y as follows:

9039Y 9040Zr +01β  (t1/2 = 64 hr)

Mass of 90Sr

is 89.907738 amu

Mass of 90Y

is 89.907152 amu

Mass of electron is 5.4857 × 10-4 amu

Mass of 90Zr

is 89.904703 amu

The balanced reaction for 90Sr

decay is given as follows:

9038Sr  9039Y + 0-1β

Now, the mass defect Δm

is calculated as follows:

Δm=Mass of productsMass of reactants

Substitute the values of masses in the above expression.

Δm=[ Mass of 90Y+mass of e][Mass of 90Sr]      = [ 89.907152 amu + 5.4857 × 10-4 amu ][89.907738 amu ]      =3.743 × 105 amu

Now, it is known that 1 kg is equivalent to 6.022 × 1026amu

Thus, the conversion factor for this is 1Kg6.022 × 1026 amu

Hence, the mass defect can be converted to kilogram unit by using the above conversion factor as follows:

Δm=(3.743 × 105 amu ×1kg6.022 × 1026 amu)       = 6.216 × 1032kg

Now, the energy during the decay of a radioactive substance is given as:

ΔE=(Δm)c2

Substitute the values of speed of light and energy in the above expression.

ΔE=(6.216 × 1032kg)(3×108m/sec)2      =5.59 ×1015J

Thus, the energy released during the decay of 90Sr

is 5.59 × 10-15J

The balanced reaction for 90Y

decay is given as follows:

9039Y 9040Zr+01β 

Now, the mass defect Δm

is calculated as follows:

Δm=Mass of productsMass of reactants

Substitute the values of masses in the above expression.

Δm=[ Mass of 90Zr + Mass of e][Mass of 90Sr]      =[ 89.904703 amu + 5.4857×104 amu ][89.907152 amu ]      =1.900×103 amu

Now, it is known that 1 kg is equivalent to 6.022 × 1026amu

Thus, the conversion factor is 1Kg6.022 × 1026 amu

Hence, the mass defect can be converted to kilogram unit by using the above conversion factor as follows:

Δm=(1.900 ×103 amu ×1kg6.022 × 1026 amu)       =3.156 ×1030 kg

The energy during the decay of a radioactive substance is given as follows:

ΔE=(Δm)c2

Substitute the values of energy and mass defect in the above expression.

ΔE=(3.156×1030kg)(3×108m/sec)2      = 2.84×1013J

Thus, the energy released during the decay of 90Y

is 2.84×1013J

b) The number of moles of 90Sr 

that will decay in a year, starting with 1 mole of 90Sr .

Initial time, t = 0 min moles of 90Sr=1 mol

Final time, t=1 year

 90Sr , t1/2=28.1 year

It is also known that the rate constant for the radioactive decay is given as follows:

k = 0.693t1/2

Substitute the value of half-life.

k =(0.69328.1 years)=0.0247 year1

Now, number of moles of 90Sr 

decaying in one year can be calculated as follows:

lnNtNo=kt

Here, No is initial number of moles while Nt

is the final number of moles.

Substitute the values of No, k and t

in the above expression.

lnNt1 mol=(0.0247 year1)×1 yearlnNt1 mol =(0.0247)Nt1 mol=e (0.0247)Nt = 0.9756 mol 90Sr 

Thus, the number of moles that has decayed in one year is calculated as follows:

n=1 mol0.9756 mol = 0.024 mol

So, moles of 90Sr

decayed = 0.024 mol

c) The amount of heat released (in kJ) corresponding to the  0.0244 mol of 90Sr decayed to 90Zr.

It is known that half- life of 90Y

is much shorter than that of 90Sr. Hence, it can be assumed that all 90Y

formed from 90Sr

is converted to 90Zr. Now, the energy changes observed in part (a) are for the individual nuclei.

Now, it is known that one mole of particles is equivalent to Avogadro’s number.

Hence, the conversion factor is 6.022 × 1023 nuclei1 mol

Thus, by using the above conversion, the number of nuclei decayed in one year can be calculated as follows:

(0.0244 mol × 6.022 × 1023 nuclei1 mol)=1.47 × 1022 nuclei

Now, the total energy released during the decay given in part (a) is as follows:

(5.59 × 1015J) + ( 2.84 × 1013J )=2.90×1013 J

This energy corresponds to the energy released by one nuclei.

Hence, the conversion factor is 2.90 × 1013 J1 nuclei

Moreover, it is also known that one kilojoules is equivalent to thousand joules.

Hence, the conversion factor is 1 kJ1000 J

Thus, by using the above conversion factor, the energy released in one year can be calculated as follows:

((1.47 × 1022 nuclei×2.90 × 1013 J1 nuclei×1 kJ1000 J) = 4.26×106 kJ

Hence, the heat released by the decay of 90Sr in one year is 4.26 × 106 kJ.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 20 Solutions

Chemistry

Ch. 20.2 - Prob. 3CPCh. 20.2 - Prob. 4CPCh. 20.3 - Prob. 1PPACh. 20.3 - Prob. 1PPBCh. 20.3 - Practice Problem CONCEPTUALIZE The Think About It...Ch. 20.3 - Prob. 1CPCh. 20.3 - Prob. 2CPCh. 20.3 - Prob. 3CPCh. 20.4 - Practice Problem ATTEMPT Determine the age of a...Ch. 20.4 - Practice Problem BUILD How much 206 Pb will be in...Ch. 20.4 - Prob. 1PPCCh. 20.4 - Prob. 1CPCh. 20.4 - Prob. 2CPCh. 20.5 - Prob. 1PPACh. 20.5 - Prob. 1PPBCh. 20.5 - Practice Problem CONCEPTUALIZE One of the major...Ch. 20 - Prob. 1QPCh. 20 - Prob. 2QPCh. 20 - Prob. 3QPCh. 20 - Prob. 4QPCh. 20 - Prob. 5QPCh. 20 - Prob. 6QPCh. 20 - Prob. 7QPCh. 20 - Prob. 8QPCh. 20 - 20.9 why is it impossible for the isotope to...Ch. 20 - Prob. 10QPCh. 20 - Prob. 11QPCh. 20 - Prob. 12QPCh. 20 - Prob. 13QPCh. 20 - For each pair of isotopes listed, predict which...Ch. 20 - Prob. 15QPCh. 20 - Prob. 16QPCh. 20 - Prob. 17QPCh. 20 - Prob. 18QPCh. 20 - Prob. 19QPCh. 20 - Prob. 20QPCh. 20 - Prob. 21QPCh. 20 - Prob. 22QPCh. 20 - Prob. 23QPCh. 20 - Prob. 24QPCh. 20 - Prob. 25QPCh. 20 - Prob. 26QPCh. 20 - Prob. 27QPCh. 20 - Prob. 28QPCh. 20 - Prob. 29QPCh. 20 - Prob. 30QPCh. 20 - Prob. 31QPCh. 20 - Prob. 32QPCh. 20 - Prob. 33QPCh. 20 - Prob. 34QPCh. 20 - Prob. 35QPCh. 20 - Prob. 36QPCh. 20 - Prob. 37QPCh. 20 - Prob. 38QPCh. 20 - Prob. 39QPCh. 20 - Prob. 40QPCh. 20 - Prob. 41QPCh. 20 - Prob. 42QPCh. 20 - Prob. 43QPCh. 20 - Prob. 44QPCh. 20 - Prob. 45QPCh. 20 - Prob. 46QPCh. 20 - Prob. 47QPCh. 20 - Prob. 48QPCh. 20 - Prob. 49QPCh. 20 - Prob. 50QPCh. 20 - Prob. 51QPCh. 20 - Prob. 52QPCh. 20 - Prob. 53QPCh. 20 - Prob. 54QPCh. 20 - Prob. 55QPCh. 20 - Prob. 56QPCh. 20 - Prob. 57QPCh. 20 - Prob. 58QPCh. 20 - Prob. 59QPCh. 20 - Prob. 60QPCh. 20 - Prob. 61QPCh. 20 - Prob. 62APCh. 20 - Prob. 63APCh. 20 - Prob. 64APCh. 20 - Prob. 65APCh. 20 - Prob. 66APCh. 20 - Prob. 67APCh. 20 - Prob. 68APCh. 20 - Prob. 69APCh. 20 - Prob. 70APCh. 20 - Prob. 71APCh. 20 - Prob. 72APCh. 20 - Prob. 73APCh. 20 - Prob. 74APCh. 20 - Prob. 75APCh. 20 - Prob. 76APCh. 20 - Prob. 77APCh. 20 - Prob. 78APCh. 20 - Prob. 79APCh. 20 - Prob. 80APCh. 20 - Prob. 81APCh. 20 - Prob. 82APCh. 20 - Prob. 83APCh. 20 - Prob. 84APCh. 20 - Prob. 85APCh. 20 - Prob. 86APCh. 20 - Prob. 87APCh. 20 - Prob. 88APCh. 20 - Prob. 89APCh. 20 - Prob. 90APCh. 20 - Prob. 91APCh. 20 - Prob. 92APCh. 20 - Prob. 93APCh. 20 - Prob. 94APCh. 20 - Prob. 95APCh. 20 - Prob. 96APCh. 20 - Prob. 97APCh. 20 - Prob. 98APCh. 20 - Prob. 99APCh. 20 - Prob. 100APCh. 20 - Prob. 101APCh. 20 - Prob. 102APCh. 20 - Prob. 103APCh. 20 - Prob. 1SEPPCh. 20 - Prob. 2SEPPCh. 20 - Prob. 3SEPPCh. 20 - Prob. 4SEPP
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co