College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 57P
A closely wound circular coil has a radius of 6.00 cm and carries a current of 2.50 A. How many turns must it have if the magnetic field at its center is 6.39 × 10−4 T?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
College Physics (10th Edition)
Ch. 20 - If an electron beam in a cathode-ray tube travels...Ch. 20 - Why is it not a good idea to call magnetic field...Ch. 20 - If the magnetic force does no work on a charged...Ch. 20 - A permanent magnet can be used to pick up a string...Ch. 20 - Streams of charged particles emitted from the sun...Ch. 20 - A student once proposed to obtain an isolated...Ch. 20 - The magnetic force on a moving charged particle is...Ch. 20 - The text discusses the magnetic field of an...Ch. 20 - Two parallel conductors carrying current in the...Ch. 20 - Household wires (such as lamp cords) often carry...
Ch. 20 - Can a charged particle move through a magnetic...Ch. 20 - Prob. 12CQCh. 20 - An electron traveling with a speed v enters a...Ch. 20 - A beam of protons is directed horizontally into...Ch. 20 - A wire carrying a current in the direction shown...Ch. 20 - A solenoid is connected to a battery as shown in...Ch. 20 - Two very long, straight, parallel wires carry...Ch. 20 - A light circular wire suspended by a thin silk...Ch. 20 - An electron is moving di'ectly toward you in a...Ch. 20 - Three particles having the same mass and the same...Ch. 20 - A metal bar connected by metal leads to the...Ch. 20 - A certain current produces a magnetic field 8 near...Ch. 20 - A coil is connected to a battery as shown in...Ch. 20 - A particle enters a uniform magnetic field...Ch. 20 - In a 1.25 T magnetic field directed vertically...Ch. 20 - An ion having charge +6e is traveling horizontally...Ch. 20 - A proton traveling at 3 60 km/s suddenly enters a...Ch. 20 - A particle having a mass of 0.195 g carries a...Ch. 20 - At a given instant, a particle with a mass of 5.00...Ch. 20 - If the magnitude of the magnetic force on a proton...Ch. 20 - A particle with mass 3 102 kg and charge +5 C...Ch. 20 - A particle with a charge of 2.50 108 C is moving...Ch. 20 - A particle with mass 1.81 103 kg and a charge of...Ch. 20 - Prob. 10PCh. 20 - Prob. 11PCh. 20 - An electron moves at 2.50 106 m/s through a...Ch. 20 - In a cloud chamber- experiment, 3 proton enters a...Ch. 20 - An alpha particle (a He nucleus, containing two...Ch. 20 - A deuteron particle (the nucleus of an isotope of...Ch. 20 - A beam of protons traveling at 1.20 km/s enters a...Ch. 20 - A uniform magnetic field bends an electron in a...Ch. 20 - 18. An electron at point A in Figure 20.59 has a...Ch. 20 - Prob. 19PCh. 20 - A 3.25 g bullet picks up an electric charge of...Ch. 20 - An electron travels into a 0.3 magnetic field...Ch. 20 - Prob. 22PCh. 20 - Singly ionized (one electron removed) atoms are...Ch. 20 - Ancient meat eating. The amount of meat in...Ch. 20 - A straight vertical wire carries a current of 1.20...Ch. 20 - Magnetic force on a lightning bolt. Currents...Ch. 20 - A horizontal rod 0.200 m long carries a current...Ch. 20 - A straight 2.5 m wire carries a typical household...Ch. 20 - A magnetic field is used to suspend a wire of mass...Ch. 20 - A rectangular 10.0 cm by 20.0 cm circuit carrying...Ch. 20 - A long wire carrying a 6.00 A current reverses...Ch. 20 - As long wire carrying 4.50 A or current makes two...Ch. 20 - The 20.0 cm by 35.0 cm rectangular circuit shown...Ch. 20 - Prob. 34PCh. 20 - A circular coil of wire 8.6 cm in diameter has 15...Ch. 20 - A coil having 165 turns and a radius of 1.2 cm...Ch. 20 - A circular coil of 50 loops and diameter 20.0 cm...Ch. 20 - You want to produce a magnetic field of magnitude...Ch. 20 - Household magnetic fields. Home circuit breakers...Ch. 20 - (a) How large a current would a very long,...Ch. 20 - Currents in the heart. The body contains many...Ch. 20 - Magnetic sensitivity of electric fish. Electric...Ch. 20 - A jumper cable is used to start a car that has a...Ch. 20 - If the magnetic field due to a long, straight,...Ch. 20 - A long, straight wire carries a current l0 and...Ch. 20 - EMF. Currents in dc transmission lines can be 100...Ch. 20 - A long, straight telephone cable contains six...Ch. 20 - Two insulated wires perpendicular to each other in...Ch. 20 - Two long straight parallel wires are 10.0 cm apart...Ch. 20 - Set Up: B=0l2r The direction of BB is given by the...Ch. 20 - Two high-current transmission lines carry currents...Ch. 20 - Prob. 52PCh. 20 - Prob. 53PCh. 20 - An electric bus operates by drawing current from...Ch. 20 - A circular metal loop is 22 cm in diameter, (a)...Ch. 20 - A closely wound circular coil with a diameter of...Ch. 20 - A closely wound circular coil has a radius of 6.00...Ch. 20 - BIO Currents in the brain. The magnetic field...Ch. 20 - A closely wound, circular coil with radius 2.40 cm...Ch. 20 - Two circular concentric loops of wire lie on a...Ch. 20 - Calculate the magnitude and direction of the...Ch. 20 - A solenoid contains 750 coils of very thin wire...Ch. 20 - As a new electrical technician, you are designing...Ch. 20 - A solenoid is designed to produce a 0.0279 T...Ch. 20 - As shown in Figure 20.67, a single circular...Ch. 20 - A solenoid that is 35 cm long and contains 450...Ch. 20 - You have 25 m of wire, which you want to use to...Ch. 20 - A toroidal solenoid (see Figure 20.42) has inner...Ch. 20 - Three long, straight electrical cables, running...Ch. 20 - A long, straight, cylindrical wire of radius R...Ch. 20 - Platinum is a paramagnetic metal having a relative...Ch. 20 - When a certain paramagnetic material is placed in...Ch. 20 - A 150 g ball containing 4.00 108 excess electrons...Ch. 20 - Magnetic balance. The circuit shown in Figure...Ch. 20 - A thin 50.0-cm-long metal bar with mass 750 g...Ch. 20 - 76. A long, straight wire containing a...Ch. 20 - A singly charged an of Li (on isotope of lithium...Ch. 20 - An insulated circular ring of diameter 6.50 cm...Ch. 20 - The effect of transmission lines. Two hikers are...Ch. 20 - DATA A current-carrying wife of length 0.15 m is...Ch. 20 - Two very long, straight wires carry currents as...Ch. 20 - Prob. 82GPCh. 20 - Prob. 83GPCh. 20 - Prob. 84GPCh. 20 - A long wire carrying 6.50 A of current makes two...Ch. 20 - BIO Magnetic fields and MRI. Magnetic resonance...Ch. 20 - Prob. 87PPCh. 20 - The large magnetic fields used in MRI can produce...Ch. 20 - BIO Studying magnetic bacteria. Some types of...Ch. 20 - To use a larger sample of bacteria, the...Ch. 20 - BIO Studying magnetic bacteria. Some types of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The time taken by sound wave to travel 9000 m in water.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
A helium balloon, assumed to be a perfect sphere, has a radius of 22.0 cm. At room temperature (20°C), its inte...
Physics for Scientists and Engineers with Modern Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
At the right is a sketch showing one of the atoms in the diffuse, cool cloud of gas described in the previous q...
Lecture- Tutorials for Introductory Astronomy
Genetic Engineering and Future Evolution. For billions of years, evolution has proceeded through mutations and ...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The accompanying figure shows a cross-section of a long, hollow, cylindrical conductor of inner radius r1= 3.0 cm and outer radius r2= 5.0 cm. A 50-A current distributed uniformly over the cross-section flows into the page. Calculate the magnetic field at r = 2.0 cm. r = 4.0 cm. and r = 6.0 cm.arrow_forwardHow many turns must be wound on a flat, circular coil of radius 20 cm in order to produce a magnetic field of magnitude 4.0105 T at the center of the coil when the current through it is 0.85 A?arrow_forwardFigure CQ19.7 shows a coaxial cable carrying current I in its inner conductor and a return current of the same magnitude in the opposite direction in the outer conductor. The magnetic field strength at r = r0 is Find the ratio B/B0, at (a) r = 2r0 and (b) r = 4r0. Figure CQ19.7arrow_forward
- A square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?arrow_forwardA magnetic field directed into the page changes with time according to B = 0.030 0t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see Fig. P23.28). When t = 3.00 s and r2 = 0.020 0 m, what are (a) the magnitude and (b) the direction of the electric field at point P2?arrow_forwardA wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0, (b) 90.0, and (c) 120.arrow_forward
- When the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0104 T. What is the radius of the loop?arrow_forwardAcircularcoiofwireofradius5.Ocmhas2Otums and carries a current of 2.0 A. The coil lies in a magnetic field of magnitude 0.50 T that is directed parallel to the plane of the coil. (a) What is the magnetic dipole moment of the coil? (b) What is the torque on the coil?arrow_forwardCalculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forward
- A circular coil of radius 5.0 cm is wound with five turns and carries a current of 5.0 A. If the coil is placed in a uniform magnetic field of strength 5.0 T, what is the maximum torque on it?arrow_forwardIn Figure P22.43, the current in the long, straight wire is I1 = 5.00 A and the wire lies in the plane of the rectangular loop, which carries a current I2 = 10.0 A. The dimensions in the figure are c = 0.100 m, a = 0.150 m, and = 0.450 m. Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire. Figure P22.43 Problems 43 and 44.arrow_forwardA long, solid, cylindrical conductor of radius 3.0 cm carries a current of 50 A distributed uniformly over its cross-section. Plot the magnetic field as a function of the radial distance r from the center of the conductor.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY