College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 3MCP
A wire carrying a current in the direction shown in Figure 20.48 passes between the poles of two bar magnets. What is the direction of the magnetic force on this wire due to the magnet? (Hint: Recall that magnetic field lines point out of a north magnetic pole and into a south magnetic pole.)
Figure 20.48
Multiple-Choice Problem 3.
- A. Out of the paper
- B. Into the paper
- C. Toward the N pole of the magnet
- D. Toward the S pole of the magnet
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
College Physics (10th Edition)
Ch. 20 - If an electron beam in a cathode-ray tube travels...Ch. 20 - Why is it not a good idea to call magnetic field...Ch. 20 - If the magnetic force does no work on a charged...Ch. 20 - A permanent magnet can be used to pick up a string...Ch. 20 - Streams of charged particles emitted from the sun...Ch. 20 - A student once proposed to obtain an isolated...Ch. 20 - The magnetic force on a moving charged particle is...Ch. 20 - The text discusses the magnetic field of an...Ch. 20 - Two parallel conductors carrying current in the...Ch. 20 - Household wires (such as lamp cords) often carry...
Ch. 20 - Can a charged particle move through a magnetic...Ch. 20 - Prob. 12CQCh. 20 - An electron traveling with a speed v enters a...Ch. 20 - A beam of protons is directed horizontally into...Ch. 20 - A wire carrying a current in the direction shown...Ch. 20 - A solenoid is connected to a battery as shown in...Ch. 20 - Two very long, straight, parallel wires carry...Ch. 20 - A light circular wire suspended by a thin silk...Ch. 20 - An electron is moving di'ectly toward you in a...Ch. 20 - Three particles having the same mass and the same...Ch. 20 - A metal bar connected by metal leads to the...Ch. 20 - A certain current produces a magnetic field 8 near...Ch. 20 - A coil is connected to a battery as shown in...Ch. 20 - A particle enters a uniform magnetic field...Ch. 20 - In a 1.25 T magnetic field directed vertically...Ch. 20 - An ion having charge +6e is traveling horizontally...Ch. 20 - A proton traveling at 3 60 km/s suddenly enters a...Ch. 20 - A particle having a mass of 0.195 g carries a...Ch. 20 - At a given instant, a particle with a mass of 5.00...Ch. 20 - If the magnitude of the magnetic force on a proton...Ch. 20 - A particle with mass 3 102 kg and charge +5 C...Ch. 20 - A particle with a charge of 2.50 108 C is moving...Ch. 20 - A particle with mass 1.81 103 kg and a charge of...Ch. 20 - Prob. 10PCh. 20 - Prob. 11PCh. 20 - An electron moves at 2.50 106 m/s through a...Ch. 20 - In a cloud chamber- experiment, 3 proton enters a...Ch. 20 - An alpha particle (a He nucleus, containing two...Ch. 20 - A deuteron particle (the nucleus of an isotope of...Ch. 20 - A beam of protons traveling at 1.20 km/s enters a...Ch. 20 - A uniform magnetic field bends an electron in a...Ch. 20 - 18. An electron at point A in Figure 20.59 has a...Ch. 20 - Prob. 19PCh. 20 - A 3.25 g bullet picks up an electric charge of...Ch. 20 - An electron travels into a 0.3 magnetic field...Ch. 20 - Prob. 22PCh. 20 - Singly ionized (one electron removed) atoms are...Ch. 20 - Ancient meat eating. The amount of meat in...Ch. 20 - A straight vertical wire carries a current of 1.20...Ch. 20 - Magnetic force on a lightning bolt. Currents...Ch. 20 - A horizontal rod 0.200 m long carries a current...Ch. 20 - A straight 2.5 m wire carries a typical household...Ch. 20 - A magnetic field is used to suspend a wire of mass...Ch. 20 - A rectangular 10.0 cm by 20.0 cm circuit carrying...Ch. 20 - A long wire carrying a 6.00 A current reverses...Ch. 20 - As long wire carrying 4.50 A or current makes two...Ch. 20 - The 20.0 cm by 35.0 cm rectangular circuit shown...Ch. 20 - Prob. 34PCh. 20 - A circular coil of wire 8.6 cm in diameter has 15...Ch. 20 - A coil having 165 turns and a radius of 1.2 cm...Ch. 20 - A circular coil of 50 loops and diameter 20.0 cm...Ch. 20 - You want to produce a magnetic field of magnitude...Ch. 20 - Household magnetic fields. Home circuit breakers...Ch. 20 - (a) How large a current would a very long,...Ch. 20 - Currents in the heart. The body contains many...Ch. 20 - Magnetic sensitivity of electric fish. Electric...Ch. 20 - A jumper cable is used to start a car that has a...Ch. 20 - If the magnetic field due to a long, straight,...Ch. 20 - A long, straight wire carries a current l0 and...Ch. 20 - EMF. Currents in dc transmission lines can be 100...Ch. 20 - A long, straight telephone cable contains six...Ch. 20 - Two insulated wires perpendicular to each other in...Ch. 20 - Two long straight parallel wires are 10.0 cm apart...Ch. 20 - Set Up: B=0l2r The direction of BB is given by the...Ch. 20 - Two high-current transmission lines carry currents...Ch. 20 - Prob. 52PCh. 20 - Prob. 53PCh. 20 - An electric bus operates by drawing current from...Ch. 20 - A circular metal loop is 22 cm in diameter, (a)...Ch. 20 - A closely wound circular coil with a diameter of...Ch. 20 - A closely wound circular coil has a radius of 6.00...Ch. 20 - BIO Currents in the brain. The magnetic field...Ch. 20 - A closely wound, circular coil with radius 2.40 cm...Ch. 20 - Two circular concentric loops of wire lie on a...Ch. 20 - Calculate the magnitude and direction of the...Ch. 20 - A solenoid contains 750 coils of very thin wire...Ch. 20 - As a new electrical technician, you are designing...Ch. 20 - A solenoid is designed to produce a 0.0279 T...Ch. 20 - As shown in Figure 20.67, a single circular...Ch. 20 - A solenoid that is 35 cm long and contains 450...Ch. 20 - You have 25 m of wire, which you want to use to...Ch. 20 - A toroidal solenoid (see Figure 20.42) has inner...Ch. 20 - Three long, straight electrical cables, running...Ch. 20 - A long, straight, cylindrical wire of radius R...Ch. 20 - Platinum is a paramagnetic metal having a relative...Ch. 20 - When a certain paramagnetic material is placed in...Ch. 20 - A 150 g ball containing 4.00 108 excess electrons...Ch. 20 - Magnetic balance. The circuit shown in Figure...Ch. 20 - A thin 50.0-cm-long metal bar with mass 750 g...Ch. 20 - 76. A long, straight wire containing a...Ch. 20 - A singly charged an of Li (on isotope of lithium...Ch. 20 - An insulated circular ring of diameter 6.50 cm...Ch. 20 - The effect of transmission lines. Two hikers are...Ch. 20 - DATA A current-carrying wife of length 0.15 m is...Ch. 20 - Two very long, straight wires carry currents as...Ch. 20 - Prob. 82GPCh. 20 - Prob. 83GPCh. 20 - Prob. 84GPCh. 20 - A long wire carrying 6.50 A of current makes two...Ch. 20 - BIO Magnetic fields and MRI. Magnetic resonance...Ch. 20 - Prob. 87PPCh. 20 - The large magnetic fields used in MRI can produce...Ch. 20 - BIO Studying magnetic bacteria. Some types of...Ch. 20 - To use a larger sample of bacteria, the...Ch. 20 - BIO Studying magnetic bacteria. Some types of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A dropped ball bounces to one-half its original height. Discuss the energy transformations that take place.
University Physics Volume 1
The diameter of a hydrogen atom is about 0.1 nm, and the diameter of a proton is about 1 fm. How many times big...
Essential University Physics: Volume 1 (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. Which lists the major steps of solar s...
Cosmic Perspective Fundamentals
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
10.20 A siring is wrapped several times around the rim of a small hoop with radius 8.00 cm and mass 0.180 kg. T...
University Physics with Modern Physics (14th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which reason of the early universe was...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At a certain location, Earth has a magnetic field of 0.60 104 T, pointing 75 below the horizontal in a north-south plane. A 10.0-m-long straight wire carries a 15-A current, (a) If the current is directed horizontally toward the east, what are the magnitude and direction of the magnetic force on tile wire? (b) What are the magnitude and direction of the force if the current is directed vertically upward?arrow_forwardA laboratory electromagnet produces a magnetic field of magnitude 1.50 T. A proton moves through this field with a speed of 6.00 106 m/s. (a) Find the magnitude of the maximum magnetic force that could he exerted on the proton. (b) What is the magnitude of the maximum acceleration of the proton? (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (d) Would the electron experience the same acceleration? Explain.arrow_forwardA conductor consists of a circular loop of radius K and two long, straight sections as shown in Figure P50.7. The wire lies in the plane of the paper and carries a current I. (a) What is the direction of the magnetic field at the center of the loop? (b) Find an expression for the magnitude of the magnetic field at the center of the loop.arrow_forward
- Find the direction of the magnetic field acting on a positively charged particle moving in the various situations shown in Figure P28.3 if the direction of the magnetic force acting on it is as indicated. Figure P28.3arrow_forwardA charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? There may be more than one correct statement. (a) It exerts a force on the particle parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It does not change the magnitude of the momentum of the particle.arrow_forward(a) What is the angle between a wire carrying an 8.00-A current and the 1.20-T field it is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire if it is rotated to make an angle of 90° with the field?arrow_forward
- What creates a magnetic field? More than one answer may be correct. (a) a stationary object with electric charge (b) a moving object with electric charge (c) a stationary conductor carrying electric current (d) a difference in electric potential (e) a charged capacitor disconnected from a battery and at rest. Note: In Chapter 24, we will see that a changing electric field also creates a magnetic field.arrow_forward(a) A proton moving with velocity v=ii experiences a magnetic force F=Fij. Explain what you can and cannot infer about B from this information. (b) What If? In terms of Fi, what would be the force on a proton in the same field moving with velocity v=ii? (c) What would be the force on an electron in the same field moving with velocity v=ii?arrow_forwardA particle’s path is bent when it passes through a region of non-zero magnetic field although its speed remains unchanged. This is very useful for “beam steering’’ in particle accelerators. Consider a proton of speed 4106m/s entering a region of uniform magnetic field 0.2 T over a 5-cm-wide region. Magnetic field is perpendicular to the velocity of the particle. By how much angle will the path of the proton be bent? (Hint: the particle comes out tangent to a circle.arrow_forward
- (a) A 0.750-m-long section of cable carrying current to a car starter motor makes an angle at 60° with the Earth’s 5.00105-T field. What is the current when the wire experiences a force of 7.00103N ? (b) If you run the wire between the poles of a strong horseshoe magnet, subjecting 5.00 cm of it to a 1.75T field, what force is exerted on this segment of wire?arrow_forwardUnreasonable Results A charged particle having mass 6.641027kg (that of a helium atom) moving at 8.70105m/s perpendicular to a 1.50T magnetic field travels in a circular path of radius 16.0 mm. (a) What is the charge of the particle? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forwardA laboratory electromagnet produces a magnetic field of magnitude 1.50 T. A proton moves through this field with a speed of 6.00 106 m/s. (a) Find the magnitude of the maximum magnetic force that could be exerted on the proton. (b) What is the magnitude of the maximum acceleration of the proton? (c) Would the field exert the same magnetic force on an electron moving through the field with the same speed? (d) Would the electron undergo the same acceleration? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY