Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 38P
(II) A 2.8-kg piece of aluminum at 43.0°C is placed in 1.0 kg of water in a Styrofoam container at room temperature (20°C). Estimate the net change in entropy of the system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) A 2.8-kg piece of aluminum at 28.5°C is placed in 1.0 kgof water in a Styrofoam container at room temperature(20.0°C). Estimate the net change in entropy of the system.
(I) 1.0 kg of water is heated from 0°C to 100°C. Estimatethe change in entropy of the water
. (I) What is the change in entropy of 1.00 m3 of water at 0°C when it is frozen to ice at 0°C?
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 20.2 - An adiabatic process is defined as one in which no...Ch. 20.3 - A motor is running with an intake temperature TH =...Ch. 20.6 - A 1.00.kg piece of ice at 0C melts very slowly to...Ch. 20.9 - Prob. 1EECh. 20 - Prob. 1QCh. 20 - Can you warm a kitchen in winter by leaving the...Ch. 20 - Would a definition of heat engine efficiency as e...Ch. 20 - What plays the role of high-temperature and...Ch. 20 - Which will give the greater improvement in the...Ch. 20 - The oceans contain a tremendous amount of thermal...
Ch. 20 - Discuss the factors that keep real engines from...Ch. 20 - Prob. 8QCh. 20 - Describe a process in nature that is nearly...Ch. 20 - (a) Describe how heat could be added to a system...Ch. 20 - Suppose a gas expands to twice its original volume...Ch. 20 - Give three examples, other than those mentioned in...Ch. 20 - Which do you think has the greater entropy, 1 kg...Ch. 20 - (a) What happens if you remove the lid of a bottle...Ch. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - The first law of thermodynamics is sometimes...Ch. 20 - Powdered milk is very slowly (quasistatically)...Ch. 20 - Two identical systems are taken from state a to...Ch. 20 - It can he said that the total change in entropy...Ch. 20 - Use arguments, other than the principle of entropy...Ch. 20 - (I) A heat engine exhausts 7800 J of heat while...Ch. 20 - (I) A certain power plant puts out 580 MW of...Ch. 20 - (II) A typical compact car experiences a total...Ch. 20 - (II) A four-cylinder gasoline engine has an...Ch. 20 - (II) The burning of gasoline in a car releases...Ch. 20 - (II) Figure 2017 is a PV diagram for a reversible...Ch. 20 - (III) The operation of a diesel engine can be...Ch. 20 - (I) What is the maximum efficiency of a heat...Ch. 20 - (I) It is not necessary that a heat engines hot...Ch. 20 - (II) A heal engine exhausts its heat at 340C and...Ch. 20 - (II) (a) Show that the work done by a Carnot...Ch. 20 - (II) A Carnot engines operating temperatures are...Ch. 20 - (II) A nuclear power plant operates at 65% of its...Ch. 20 - (II) A Carnot engine performs work at the rate of...Ch. 20 - (II) Assume that a 65 kg hiker needs 4.0 103 kcal...Ch. 20 - (II) A particular car does work at the rate of...Ch. 20 - (II) A heat engine utilizes a heat source at 580C...Ch. 20 - (II) The working substance of a certain Carnot...Ch. 20 - (III) A Carnot cycle, shown in Fig. 20-7, has the...Ch. 20 - (III) One mole of monatomic gas undergoes a Carnot...Ch. 20 - (III) In an engine that approximates the Otto...Ch. 20 - (I) If an ideal refrigerator keeps its contents at...Ch. 20 - (I) The low temperature of a freezer cooling coil...Ch. 20 - (II) An ideal (Carnot) engine has an efficiency of...Ch. 20 - (II) An ideal heal pump is used to maintain the...Ch. 20 - (II) A restaurant refrigerator has a coefficient...Ch. 20 - (II) A heat pump is used to keep a house warm at...Ch. 20 - (II) (a) Given that the coefficient of performance...Ch. 20 - (II) A Carnot refrigerator (reverse of a Carnot...Ch. 20 - (II) A central heat pump updating as an air...Ch. 20 - (II) What volume of water at 0C can a freezer make...Ch. 20 - (I) What is the change in entropy of 250g of steam...Ch. 20 - (I) A 7.5-kg box having an initial speed of 4.0m/s...Ch. 20 - (I) What is the change in entropy of 1.00 m3 of...Ch. 20 - (II) If 1.00m3 of water at 0C is frozen and cooled...Ch. 20 - (II) If 0.45kg f water at 100C is changed by a...Ch. 20 - (II) An aluminum rod conducts 9.50 cal/s from a...Ch. 20 - (II) A 2.8-kg piece of aluminum at 43.0C is placed...Ch. 20 - (II) An ideal gas expands isothermally (T = 410 K)...Ch. 20 - (II) When 2.0 kg of water at 12.0C is mixed with...Ch. 20 - (II) (a) An ice cube of mass m at 0C is placed in...Ch. 20 - (II) The temperature of 2.0mol of an ideal...Ch. 20 - (II) Calculate the change in entropy of 1.00kg of...Ch. 20 - (II) An ideal gas of n moles undergoes the...Ch. 20 - (II) Two samples of an ideal gas are initially at...Ch. 20 - (II) A 150-g insulated aluminum cup at 15C is...Ch. 20 - (II) (a) Why would you expect the total entropy...Ch. 20 - (II) 1.00 mole of nitrogen (N2) gas and 1.00 mole...Ch. 20 - (II) Thermodynamic processes are sometimes...Ch. 20 - (III) The specific heat per mole of potassium at...Ch. 20 - (III) Consider an ideal gas of n moles with molar...Ch. 20 - (III) A general theorem states that the amount of...Ch. 20 - (III) Determine the work available in a 3.5-kg...Ch. 20 - (I) Use Eq. 2014 to determine the entropy of each...Ch. 20 - (II) Suppose that you repeatedly shake six coins...Ch. 20 - (II) Calculate the relative probabilities, when...Ch. 20 - (II) (a) Suppose you have four coins, all with...Ch. 20 - Prob. 58PCh. 20 - (II) Energy may be stored for use during peak...Ch. 20 - (II) Solar cells (Fig. 20-22) can produce about...Ch. 20 - Prob. 61PCh. 20 - It has been suggested that a heat engine could be...Ch. 20 - A heat engine takes a diatomic gas around the...Ch. 20 - A 126.5-g insulated aluminum cup at 18.00C is...Ch. 20 - (a) At a steam power plant, steam engines work in...Ch. 20 - (II) Refrigeration units can be rated in tons. A...Ch. 20 - Prob. 67GPCh. 20 - (a) What is the coefficient of performance of an...Ch. 20 - The operation of a certain heat engine takes an...Ch. 20 - A car engine whose output power is 155 hp operates...Ch. 20 - Suppose a power plant delivers energy at 850 MW...Ch. 20 - 1.00 mole of an ideal monatomic gas at STP first...Ch. 20 - Two 1100-kg cars are traveling 75 km/h in opposite...Ch. 20 - Metabolizing 1.0 kg of fat results in about 3.7 ...Ch. 20 - A cooling unit for a new freezer has an inner...Ch. 20 - Prob. 76GPCh. 20 - The Stirling cycle shown in Fig 20-27, is useful...Ch. 20 - A gas turbine operates under the Brayton cycle,...Ch. 20 - Thermodynamic processes can be represented not...Ch. 20 - An aluminum can, with negligible heat capacity, is...Ch. 20 - Prob. 81GPCh. 20 - A bowl contains a large number of red, orange, and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
49. A gray kangaroo can bound across level ground with each jump carrying it 10 m from the takeoff point. Typic...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
A piece of putty and a tennis ball with the same mass are thrown against a wall with the same velocity. Which o...
University Physics Volume 1
9. Why do electric field lines point away from positive charges and toward negative charges?
College Physics (10th Edition)
People have long been interested in life beyond Earth. What is different today that makes this possibility seem...
Life in the Universe (4th Edition)
What is the role of “loose” electrons in heat conductors?
Conceptual Physics (12th Edition)
14. A magnet and a coil are oriented as shown in Figure P25.14. The magnet is moved rapidly into the coil, held...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an isochoric process, heat is added to 10 mol of monoatomic ideal gas whose temperature increases from 273 to 373 K. What is the entropy change of the gas?arrow_forwardA glass beaker of mass 400 g contains 500 g of water at 27 . The beaker is heated reversibly so that the temperature of the beaker and water rise gradually to 57 . Find the change in entropy of the beaker and water together.arrow_forwardIn a diesel engine, the fuel is ignited without a spark plug. Instead, air in a cylinder is compressed adiabatically to a temperature above the ignition temperature of the fuel; at the point of maximum compression, the fuel is injected into the cylinder. Suppose that air at 20 C is taken into the cylinder at a volume V1 and then compressed adiabatically and quasi-statically to a temperature of 600 C and a volume V2 . If =1.4 , what is the ratio V1/V2 ? (Note: static. In an operating diesel engine, the compression is not quasi-arrow_forward
- Suppose 20 g of ice at 0 is added to 300 g of water at 60 . What is the total change in entropy of the mixture after it reaches thermal equilibrium?arrow_forwardA copper rod of cross-sectional area 5.0 cm2 and length 5.0 m conducts heat from a heat reservoir at 373 K to one at 273 K. What is the time rate of change of the universe's entropy for this process?arrow_forwardWhich of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forward
- Give an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system's entropy in this process?arrow_forwardA 0.50-kg piece of aluminum at 250 is dropped into 1.0 kg of water at 20 . After equilibrium is reached, what is the net entropy change of the system?arrow_forwardDoes the entropy increase for a Carnot engine for each cycle?arrow_forward
- Two moles of a monatomic ideal gas such as oxygen is compressed adiabatically and reversibly from a state (3 atm, 5 L) to a state with a pressure of 4 atm. (a) Find the volume and temperature of the final state. (b) Find the temperature of the initial state. (c) Find work done by the gas in the process. (d) Find the change in internal energy in the process. Assume Cv=5R and Cp=Cv+R for the diatomic ideal gas in the conditions given.arrow_forwardThe energy output of a heat pump is greater than the energy used to operate the pump. Why doesn't this statement violate the first law of thermodynamics?arrow_forwardCheck Your Understanding In Example 4.7, the spontaneous flow of heat from a hot object to a cold object results in a net increase in entropy of the universe. Discuss how this result can be related to an increase in disorder of the system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY