Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 19Q
Powdered milk is very slowly (quasistatically) added to water while being stirred. Is this a reversible process? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
It is said that expansion of an ideal gas into a vacuum results in no work done. Is this the case with real gas? Explain
90. A single gas molecule of inertia m is trapped in a box and
travels back and forth with constant speed v between opposite
walls A and B a distance € apart. At each collision with a wall,
the molecule reverses direction without changing speed. Write
algebraic expressions for (a) the magnitude of the change
in momentum of the molecule as it collides with wall B,
(b) the amount of time that elapses between collisions with
wall B; (c) the number of collisions per second the molecule
makes with wall B, and (d) the change in momentum under-
gone by wall B, per second, as a result of these collisions. 00.
* - i ) Same amount of heat is given (o equal masses of & monoatomic and a diatomic gas. The rise in temperature of monoatomic gas will be: (@) Less than rise in temperature of diatomic (b) More than rise in temperature of diatomic (¢) Same temperature rise in both (@) The rotational Kinetic energy of diatomic gas will not change.
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 20.2 - An adiabatic process is defined as one in which no...Ch. 20.3 - A motor is running with an intake temperature TH =...Ch. 20.6 - A 1.00.kg piece of ice at 0C melts very slowly to...Ch. 20.9 - Prob. 1EECh. 20 - Prob. 1QCh. 20 - Can you warm a kitchen in winter by leaving the...Ch. 20 - Would a definition of heat engine efficiency as e...Ch. 20 - What plays the role of high-temperature and...Ch. 20 - Which will give the greater improvement in the...Ch. 20 - The oceans contain a tremendous amount of thermal...
Ch. 20 - Discuss the factors that keep real engines from...Ch. 20 - Prob. 8QCh. 20 - Describe a process in nature that is nearly...Ch. 20 - (a) Describe how heat could be added to a system...Ch. 20 - Suppose a gas expands to twice its original volume...Ch. 20 - Give three examples, other than those mentioned in...Ch. 20 - Which do you think has the greater entropy, 1 kg...Ch. 20 - (a) What happens if you remove the lid of a bottle...Ch. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - The first law of thermodynamics is sometimes...Ch. 20 - Powdered milk is very slowly (quasistatically)...Ch. 20 - Two identical systems are taken from state a to...Ch. 20 - It can he said that the total change in entropy...Ch. 20 - Use arguments, other than the principle of entropy...Ch. 20 - (I) A heat engine exhausts 7800 J of heat while...Ch. 20 - (I) A certain power plant puts out 580 MW of...Ch. 20 - (II) A typical compact car experiences a total...Ch. 20 - (II) A four-cylinder gasoline engine has an...Ch. 20 - (II) The burning of gasoline in a car releases...Ch. 20 - (II) Figure 2017 is a PV diagram for a reversible...Ch. 20 - (III) The operation of a diesel engine can be...Ch. 20 - (I) What is the maximum efficiency of a heat...Ch. 20 - (I) It is not necessary that a heat engines hot...Ch. 20 - (II) A heal engine exhausts its heat at 340C and...Ch. 20 - (II) (a) Show that the work done by a Carnot...Ch. 20 - (II) A Carnot engines operating temperatures are...Ch. 20 - (II) A nuclear power plant operates at 65% of its...Ch. 20 - (II) A Carnot engine performs work at the rate of...Ch. 20 - (II) Assume that a 65 kg hiker needs 4.0 103 kcal...Ch. 20 - (II) A particular car does work at the rate of...Ch. 20 - (II) A heat engine utilizes a heat source at 580C...Ch. 20 - (II) The working substance of a certain Carnot...Ch. 20 - (III) A Carnot cycle, shown in Fig. 20-7, has the...Ch. 20 - (III) One mole of monatomic gas undergoes a Carnot...Ch. 20 - (III) In an engine that approximates the Otto...Ch. 20 - (I) If an ideal refrigerator keeps its contents at...Ch. 20 - (I) The low temperature of a freezer cooling coil...Ch. 20 - (II) An ideal (Carnot) engine has an efficiency of...Ch. 20 - (II) An ideal heal pump is used to maintain the...Ch. 20 - (II) A restaurant refrigerator has a coefficient...Ch. 20 - (II) A heat pump is used to keep a house warm at...Ch. 20 - (II) (a) Given that the coefficient of performance...Ch. 20 - (II) A Carnot refrigerator (reverse of a Carnot...Ch. 20 - (II) A central heat pump updating as an air...Ch. 20 - (II) What volume of water at 0C can a freezer make...Ch. 20 - (I) What is the change in entropy of 250g of steam...Ch. 20 - (I) A 7.5-kg box having an initial speed of 4.0m/s...Ch. 20 - (I) What is the change in entropy of 1.00 m3 of...Ch. 20 - (II) If 1.00m3 of water at 0C is frozen and cooled...Ch. 20 - (II) If 0.45kg f water at 100C is changed by a...Ch. 20 - (II) An aluminum rod conducts 9.50 cal/s from a...Ch. 20 - (II) A 2.8-kg piece of aluminum at 43.0C is placed...Ch. 20 - (II) An ideal gas expands isothermally (T = 410 K)...Ch. 20 - (II) When 2.0 kg of water at 12.0C is mixed with...Ch. 20 - (II) (a) An ice cube of mass m at 0C is placed in...Ch. 20 - (II) The temperature of 2.0mol of an ideal...Ch. 20 - (II) Calculate the change in entropy of 1.00kg of...Ch. 20 - (II) An ideal gas of n moles undergoes the...Ch. 20 - (II) Two samples of an ideal gas are initially at...Ch. 20 - (II) A 150-g insulated aluminum cup at 15C is...Ch. 20 - (II) (a) Why would you expect the total entropy...Ch. 20 - (II) 1.00 mole of nitrogen (N2) gas and 1.00 mole...Ch. 20 - (II) Thermodynamic processes are sometimes...Ch. 20 - (III) The specific heat per mole of potassium at...Ch. 20 - (III) Consider an ideal gas of n moles with molar...Ch. 20 - (III) A general theorem states that the amount of...Ch. 20 - (III) Determine the work available in a 3.5-kg...Ch. 20 - (I) Use Eq. 2014 to determine the entropy of each...Ch. 20 - (II) Suppose that you repeatedly shake six coins...Ch. 20 - (II) Calculate the relative probabilities, when...Ch. 20 - (II) (a) Suppose you have four coins, all with...Ch. 20 - Prob. 58PCh. 20 - (II) Energy may be stored for use during peak...Ch. 20 - (II) Solar cells (Fig. 20-22) can produce about...Ch. 20 - Prob. 61PCh. 20 - It has been suggested that a heat engine could be...Ch. 20 - A heat engine takes a diatomic gas around the...Ch. 20 - A 126.5-g insulated aluminum cup at 18.00C is...Ch. 20 - (a) At a steam power plant, steam engines work in...Ch. 20 - (II) Refrigeration units can be rated in tons. A...Ch. 20 - Prob. 67GPCh. 20 - (a) What is the coefficient of performance of an...Ch. 20 - The operation of a certain heat engine takes an...Ch. 20 - A car engine whose output power is 155 hp operates...Ch. 20 - Suppose a power plant delivers energy at 850 MW...Ch. 20 - 1.00 mole of an ideal monatomic gas at STP first...Ch. 20 - Two 1100-kg cars are traveling 75 km/h in opposite...Ch. 20 - Metabolizing 1.0 kg of fat results in about 3.7 ...Ch. 20 - A cooling unit for a new freezer has an inner...Ch. 20 - Prob. 76GPCh. 20 - The Stirling cycle shown in Fig 20-27, is useful...Ch. 20 - A gas turbine operates under the Brayton cycle,...Ch. 20 - Thermodynamic processes can be represented not...Ch. 20 - An aluminum can, with negligible heat capacity, is...Ch. 20 - Prob. 81GPCh. 20 - A bowl contains a large number of red, orange, and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
63. * You are doing an experiment to determine your reaction time. Your friend holds a ruler. You place your fi...
College Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
65. As shown in Figure 20.67, a single circular current loop 10.0 cm in diameter carries a clockwise 2.00 A cur...
College Physics (10th Edition)
A spherical surface surrounds an isolated positive charge, as shown. (1) If a second charge is placed outside t...
Essential University Physics: Volume 2 (3rd Edition)
What three factors affect the torque created by a force relative to a specific pivot point?
University Physics Volume 1
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which of the following statements is not true according to kinetic theory? a. The molecules in an ideal gas undergo elastic collisions. b. The molecules in an ideal gas only interact during collisions. c. Electrical attractions and repulsions between the molecules must be accounted for in the total energy of the ideal gas. d. The average energy of a molecule in an ideal gas is evenly distributed between the different degrees of freedom of the molecule. e. The energy of an ideal gas only depends on the kinetic energy of the gas.arrow_forwardOne mole of neon gas is heated from 300 K to 420 K at constant pressure. Calculate (a) the energy Q transferred to the gas, (b) the change in the internal energy of the gas, and (c) the work done on the gas. Note that neon has a molar specific heat of Cp = 20.79 J/mol K for a constant-pressure process.arrow_forwardDecades ago, it was thought that huge herbivorous dinosaurs such as Apatosaurus and Brachiosaurus habitually walked on the bottom of lakes, extending their long necks up to the surface to breathe. Brarhiosaurus had its nostrils on the top of its head. In 1977, Knut Schmidt-Nielsen pointed out that breathing would be too much work for such a creature. For a simple model, consider a sample consisting of 10.0 L of air at absolute pressure 2.00 atm, with density 2.40 kg/m3, located at the surface of a freshwater lake. Find the work required to transport it to a depth of 10.3 m, with its temperature, volume, and pressure remaining constant. This energy investment is greater than the energy that can be obtained by metabolism of food with the oxygen in that quantity of air.arrow_forward
- (a) Estimate the specific heat capacity of sodium from the Law of Dulong and Petit. The molar mass of sodium is 23.0 g/mol. (b) What is the percent error of your estimate from the known value, 1230 J/kg ? `arrow_forwardA sample of gas with a thermometer immersed in the gas is held over a hot plate. A student is asked to give a step-by-step account of what makes our observation of the temperature of the gas increase. His response includes the following steps, (a) The molecules speed up. (b) Then the molecules collide with one another more often. (c) Internal friction makes the collisions inelastic, (d) Heat is produced in the collisions. (e) The molecules of the gas transfer more energy to the thermometer when they strike it, so we observe that the temperature has gone up. (f) The same process can take place without the use of a hot plate if you quickly push in the piston in an insulated cylinder containing the gas. (i) Which of the parts (a) througharrow_forwardOne mole of neon gas is heated from 300. K to 420. K at constant pressure. Calculate (a) the energy Q transferred to the gas, (b) the change in the internal energy of the gas, and (c) the work done on the gas. Note that neon has a molar specific heat of c = 20.79 J/mol K for a constant-pressure process.arrow_forward
- Air in human lungs has a temperature of 37.0C and a saturation vapor density of 44.0g/m3. (a) If 2.00 L of air is exhaled and very dry air inhaled, what is the maximum loss at water vapor by me person? (b) Calculate the partial pressure of water vapor having this density, and compare it with the vapor pressure of 6.31103N/m2.arrow_forwardA certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forwardWhy are there two specific heats for gases Cp and Cv , yet only one given for solid?arrow_forward
- (a) People often think of humid air as "heavy." Compare the densities of air with 0% relative humidity and 100% relative humidity when both are at 1 atm and 30 . Assume that the dry air is an ideal gas composed of molecules with a molar mass of 29.0 g/mol and the moist air is the same gas mixed with water vapor. (b) As discussed in the chapter on the applications of Newton's laws, the air resistance felt by projectiles such as baseballs and golf balls is approximately FD=CpAv2/2 , where p is the mass density of the air, A is the cross-sectional area of the projectile, and C is the projectile's drag coefficient. For a fixed air pressure, describe qualitatively how the range of a projectile changes with the relative humidity. (c) When a thunderstorm is coming, usually the humidity is high and the air pressure is low. Do those conditions give an advantage or disadvantage to home-run hitters?arrow_forward(a) Use the ideal gas equation to estimate the temperature at which 1.00 kg of steam (molar mass M=18.0 g/mol) at a pressure of 1.50106 Pa occupies a volume of 0.220 m3. (b) The van der Waals constants for water are a=0.5537 Pa m6/mol2 and b=3.049105 m3/mol. Use the Van der Waals equation of state to estimate the temperature under the same conditions. (c) The actual temperature is 779 K. Which estimate is better? `arrow_forwardTo measure how far below the ocean surface a bird dives to catch a fish, a scientist uses a method originated by Lord Kelvin. He dusts the interiors of plastic tubes with powdered sugar and then seals one end of each tube. He captures the bird at nighttime in its nest and attaches a tube to its back. He then catches the same bird the next night and removes the tube. In one trial, using a tube 6.50 cm long, water washes away the sugar over a distance of 2.70 cm from the open end of the tube. Find the greatest depth to which the bird dived, assuming the air in the tube stayed at constant temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY