Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem D2.33P
To determine
To Design: A circuit which supplies a constant current of 3.1mA and current from battery is 0.1mA.
The maximum value that can be attained by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
v. Perform an analysis of the circuit to find Vo if V₁=1.1 and V2=0.6. Your working should include:
a. An accurate, clear, and complete schematic
b. Nodes and resistor values should be clearly labeled on the schematic
c. Equations for relationships between the voltages, state clearly the reasoning for each equation: e.g. KCL at node, or ideal
op-amp rules
d. Numbering for equations
✓
Screenshot 2024-10-22 at 18.0...
a. Solution for the equations and result a for Vo
What is your result for Vo?
V
V1
C
R2
U1
D
B
R2
M
-o
+
R2
E
Vo
310 ΚΩ
V2
=
Please show work
R2
1
vo
Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith (0195323033)
For the op-amp circuit above and given R1 = 10 Ohm, R2 = 5 Ohm, if
the DC gain of the op-amp is only 10 (A = 10), what is the output
voltage for an input voltage of 0.5V?
[Give your answer in number form, no units, no unit prefixes, no
commas. Answer to 3 decimal places. Be sure to include negative sign
in front, if required
Example: 10mV--> Answer Given: 0.010]
+
3.
Chapter 2 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 2.1 - Prob. 2.1ECh. 2.1 - Prob. 2.2ECh. 2.1 - Prob. 2.3ECh. 2.2 - Prob. D2.4ECh. 2.2 - Prob. 2.5ECh. 2.2 - Prob. 2.6ECh. 2.2 - Prob. D2.7ECh. 2.2 - Prob. D2.8ECh. 2.3 - Prob. 2.9ECh. 2.3 - Prob. 2.10E
Ch. 2.3 - Prob. D2.11ECh. 2.3 - Prob. 2.12ECh. 2.3 - Prob. 2.13ECh. 2.3 - Prob. 2.14ECh. 2.4 - Prob. 2.15ECh. 2.4 - Prob. D2.16ECh. 2.4 - Prob. 2.17ECh. 2.5 - Prob. 2.18ECh. 2.5 - Prob. D2.19ECh. 2.5 - Prob. D2.20ECh. 2.6 - Prob. 2.21ECh. 2.6 - Prob. 2.22ECh. 2.6 - Prob. 2.23ECh. 2.6 - Prob. 2.24ECh. 2.6 - Prob. 2.25ECh. 2.7 - Prob. 2.26ECh. 2.7 - Prob. 2.27ECh. 2.7 - Prob. 2.28ECh. 2.8 - Prob. 2.29ECh. 2.8 - Prob. 2.30ECh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. D2.12PCh. 2 - Prob. D2.13PCh. 2 - Prob. D2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. D2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. D2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. D2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. D2.33PCh. 2 - Prob. D2.34PCh. 2 - Prob. D2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. D2.37PCh. 2 - Prob. D2.38PCh. 2 - Prob. D2.39PCh. 2 - Prob. D2.40PCh. 2 - Prob. D2.41PCh. 2 - Prob. D2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. D2.44PCh. 2 - Prob. D2.45PCh. 2 - Prob. D2.46PCh. 2 - Prob. D2.47PCh. 2 - Prob. D2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. D2.51PCh. 2 - Prob. D2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. D2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. D2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. D2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. D2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. D2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. D2.76PCh. 2 - Prob. 2.77PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. D2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. D2.82PCh. 2 - Prob. D2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. D2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. D2.92PCh. 2 - Prob. D2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. D2.99PCh. 2 - Prob. D2.100PCh. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - Prob. 2.105PCh. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - Prob. 2.108PCh. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - Prob. 2.111PCh. 2 - Prob. 2.112PCh. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - Prob. 2.115PCh. 2 - Prob. D2.116PCh. 2 - Prob. D2.117PCh. 2 - Prob. D2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. D2.127P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- +15 V V. Ideally, when the two input terminals of an op-amp are shorted together (creating a condition of zerc differential voltage), and those two inputs are connected directly to ground (creating a condition of zero common-mode voltage), what should this op-amp's output voltage be? In reality, the output voltage of an op-amp under these conditions is not the same as what would be ideally predicted. Identify the fundamental problem in real op-amps, and also identify the best solution.arrow_forwardIn the op amp circuit, find the value of Rso that the power absorbed by the 10-kQ resistor is 10 mW. Take vs= 11 V. R ww 40 k2 ww Vs 10 k2 The value of R is ]kQ.arrow_forwardCreate Op-amp circuit... with:Vin= -1 Volt (DC) Vout = 14 Volt (DC) Only resistors with 1k, 3k, 5k, 7k and 11k ohms can be used while the circuit is being built. The V+ value of the LM741 IC to be used for op-amps will be 20 volts and the V- value will be -20 volts. You need to use at least one inverting amplifier and one non-inverting amplifier to build the circuit. Question: Write the gain formula of the circuit and calculate it, and write how we should find the Vout value..arrow_forward
- it's urgent please solve asaparrow_forwardOAP 3 (a) Design a circuit that provides a gain of +10 V/V for an input signal vs. Use 100 k as the smaller/smallest resistor value in your design. Include a drawing of the circuit and label all resistors that you use with their respective values. (b) Assume the op-amp is powered at VDD = +15 V and Vss = -15 V. At what positive and negative values of vs will the output vo be +/-15 V? (c) What will happen if the values of vs go beyond the values from (b)?arrow_forwardCircuits please helparrow_forward
- The following Operational Amplifier circuit is given. Analyze the circuit carefully to identify the functions (i.e., OP-AMP configurations) of each OP-Amps. Calculate the first stage output voltage Vx and then the output voltage at the output of the second stage Vo . Determine the currents I0, IF, and IX . Finally, determine the power absorbed by the resistor R7. The resistors: R2 = R4 =100KW. R1 = R3 = 10W, R5 = 10W, R6 = 90 KW. and R5 = 10W. The load resistor R7 = 10KW. The current source; I1 = 100μA and V2 = 1V.arrow_forwardOAP 2 ( (a) Design a circuit which provides a gain of -5 V/V for an input voltage source vs. You have an op-amp powered at VDD = +5 V and Vss = -5 V. Design your circuit such that 1 µA is drawn from the input vs when Vs = 200 mV. Include a drawing of the circuit and label all resistors that you use with their respective values. (b) What is the op-amp output voltage when vs = 200 mV? OAP 3 (a) Design a circuit that provides a gain of +10 V/V for an input signal vs. Use 100 kn as the smaller/smallest resistor value in your design. Include a drawing of the circuit and label all resistors that you use with their respective values. (b) Assume the op-amp is powered at VDD = +15 V and Vss = -15 V. At what positive and negative values of vs will the output vo be +/-15 V? (c) What will happen if the values of vs go beyond the values from (b)?arrow_forwardConsider two points at different voltages, and v₂. Design a circuit using an operational amplifier and some resistors for which the output voltage of the op-amp would be defined by the following equation: Vout = 2v₁ +0,5v₁₂arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Electrical Engineering: Ch 5: Operational Amp (2 of 28) Inverting Amplifier-Basic Operation; Author: Michel van Biezen;https://www.youtube.com/watch?v=x2xxOKOTwM4;License: Standard YouTube License, CC-BY