Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.89P
To determine
To sketch: The output waveform for an op-amp differentiator with given time constant for a rate-controlled step input.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The ideal op-amps depicted can swing rail-to-rail at output, and Vcc= 13 V. Initially, the output voltage Vo = +13 V and the input voltage is vS = -13 V. The feedback resistors are R1 = 6.4 k0, R2 = 8.5
kQ, and R3 = 1.6 KQ.
If the input voltage is gradually increased, at what value of vS (to 1% accuracy) does the output voltage (Vo) change to Vo=-Vcc?
VVV
vS =
+
R10
Vcc
-Vcc
R20
04
O
Vo
Discussion:
1- What kind of restrictions Non- inverting op-amp face compared to
inverting op-amp?
2- State 5 different types of op amp. Demonstrate them briefly then
draw the circuit diagram for each kind.
3- For an inverting op amp, if the voltage input peak equal to 10.2 V,
R=10KQ and RF 2002, find Vo and the voltage gain. Assume the
input signal has a sinusoidal behavior.
4- Consider an OP amp connected to the inverting configuration to
realize a closed-loop gain of -50 V/V utilizing resistors o f 1 k2 and
50 kQ. A load resistance RL is connected from the output to ground,
and a low-frequency sine wave signal of peak amplitude Vp is
applied to the input. Let the OP amp be ideal except that its output
voltage saturates at +/- 10V and its output current is limited to the
range +/-15 mA.
For RL = 1 k2, what is the maximum possible value of Vp while an
undistorted output sinusoid is obtained?
The two input terminals of an op-amp are connected to voltage signals of strength
745µV and 740µV repectively. The gain of the op-amp in common mode is 50 and CMMR is
8&IB. Calculate the output voltage and % of error due to common mode.
Chapter 2 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 2.1 - Prob. 2.1ECh. 2.1 - Prob. 2.2ECh. 2.1 - Prob. 2.3ECh. 2.2 - Prob. D2.4ECh. 2.2 - Prob. 2.5ECh. 2.2 - Prob. 2.6ECh. 2.2 - Prob. D2.7ECh. 2.2 - Prob. D2.8ECh. 2.3 - Prob. 2.9ECh. 2.3 - Prob. 2.10E
Ch. 2.3 - Prob. D2.11ECh. 2.3 - Prob. 2.12ECh. 2.3 - Prob. 2.13ECh. 2.3 - Prob. 2.14ECh. 2.4 - Prob. 2.15ECh. 2.4 - Prob. D2.16ECh. 2.4 - Prob. 2.17ECh. 2.5 - Prob. 2.18ECh. 2.5 - Prob. D2.19ECh. 2.5 - Prob. D2.20ECh. 2.6 - Prob. 2.21ECh. 2.6 - Prob. 2.22ECh. 2.6 - Prob. 2.23ECh. 2.6 - Prob. 2.24ECh. 2.6 - Prob. 2.25ECh. 2.7 - Prob. 2.26ECh. 2.7 - Prob. 2.27ECh. 2.7 - Prob. 2.28ECh. 2.8 - Prob. 2.29ECh. 2.8 - Prob. 2.30ECh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. D2.12PCh. 2 - Prob. D2.13PCh. 2 - Prob. D2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. D2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. D2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. D2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. D2.33PCh. 2 - Prob. D2.34PCh. 2 - Prob. D2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. D2.37PCh. 2 - Prob. D2.38PCh. 2 - Prob. D2.39PCh. 2 - Prob. D2.40PCh. 2 - Prob. D2.41PCh. 2 - Prob. D2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. D2.44PCh. 2 - Prob. D2.45PCh. 2 - Prob. D2.46PCh. 2 - Prob. D2.47PCh. 2 - Prob. D2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. D2.51PCh. 2 - Prob. D2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. D2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. D2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. D2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. D2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. D2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. D2.76PCh. 2 - Prob. 2.77PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. D2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. D2.82PCh. 2 - Prob. D2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. D2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. D2.92PCh. 2 - Prob. D2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. D2.99PCh. 2 - Prob. D2.100PCh. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - Prob. 2.105PCh. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - Prob. 2.108PCh. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - Prob. 2.111PCh. 2 - Prob. 2.112PCh. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - Prob. 2.115PCh. 2 - Prob. D2.116PCh. 2 - Prob. D2.117PCh. 2 - Prob. D2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. D2.127P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Select true or false for 1 and 21 Op amp component is temperature limited due to maximum output current2 The input offset voltage affects the value of the opamp output and is caused by internal non-idealities in the transistors and resistors. 3 What is the use of an op amp in voltage follower? Select one:a. It is the ideal bridge to couple any stages without affecting the voltage.b. It is ideal for maximum power transferc. Allows a small signal to be amplified with high gaind. voltage attenuation 4. It allows to eliminate the problem of variability in the gain parameter of the circuit:Select one:a. The load RLb. High input impedancec. feedback loopd. decoupling capacitors 5 Complete: The output current is limited due to the _____ that the opamp can handle, while the ______ is limiting due to the maximum bias level supported by the transistor.arrow_forwardProblem i: The op amp in the circuit shown has a slew rate of 3V/usec. a. Calculate the rise time Tsr due to the slew rate when the input is a pulse that changes from zero to 0.3V. b. Calculate the maximum frequency for a 0 to 0.3 V square wave input, if the output rise and fall times due to slew rate can't exceed 10% of the square wave pulse width. O Vsig + Rf www R₁ 5k Vout Rf 120karrow_forwardAn op-amp intended for operation with a closed-loop gain of -100 V/V uses resistors of 10 k2 and 1 MQ with a bias-current-compensation resistor R3. Assuming an ideal voltage source at the input, what should the value of R3 be? With input grounded, for one particular op-amp, the output offset voltage is found to be +0.30 V. Estimate the input offset current assuming zero input offset voltage. In this case, if we know the input offset current is one-tenth the bias current what value of R3 will result in zero output offset voltage?arrow_forward
- The output of the thermocouple is fed to the inverting amplifier op-amp with the output reading of -2.25 V. Find the temperature of the hot junction if cold junction is subjected to temperature of 24° and proportionality constant is 500x10-6. Select one: a. -175.3967 °C -128.7265 °C 349.947 °C O b. O C. c. O d. O e. O f. 378.3921 °C 184.2935 °C -228.8767 °C g. 228.8767 °C Oh. -256.6378 °Carrow_forward+15 V V. Ideally, when the two input terminals of an op-amp are shorted together (creating a condition of zerc differential voltage), and those two inputs are connected directly to ground (creating a condition of zero common-mode voltage), what should this op-amp's output voltage be? In reality, the output voltage of an op-amp under these conditions is not the same as what would be ideally predicted. Identify the fundamental problem in real op-amps, and also identify the best solution.arrow_forwardIf the ideal design for op-Amp circuit generate 200 mV at the output, Then practically with 26 mV offset voltage the output voltage of the circuit will be equal to .. . mVarrow_forward
- The non-inverting and inverting inputs of an op-amp have an input voltage of 1.5 mV and 1.0 mV, respectively. If the op-amp has a common-mode voltage gain of 10 and a differential-mode gain of 10,000, what is its output voltage? A. 5.0 V B. 5.0125 mV C. 5.0125 V D. 25.0125 V Ans. C. 5.0125 Varrow_forwardWhich op-amp will produce an outputthat is more similar to the output of an ideal op-amp?arrow_forwardThe following Operational Amplifier circuit is given. Analyze the circuit carefully to identify the functions (i.e., OP-AMP configurations) of each OP-Amps. Calculate the first stage output voltage Vx and then the output voltage at the output of the second stage Vo . Determine the currents I0, IF, and IX . Finally, determine the power absorbed by the resistor R7. The resistors: R2 = R4 =100KW. R1 = R3 = 10W, R5 = 10W, R6 = 90 KW. and R5 = 10W. The load resistor R7 = 10KW. The current source; I1 = 100μA and V2 = 1V.arrow_forward
- 7arrow_forwardV₁2 R₂ R₂ R₁ What do you call this OP-AMP configuration? Derive its output expression, If Rf=2k and R1=R2=R3=1k2, what is Vo?arrow_forwardDraw the circuit diagram of a differential amplifier using one op amp and resistances as needed. Give the output voltage in terms of the input voltages and resistances.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electrical Engineering: Ch 5: Operational Amp (2 of 28) Inverting Amplifier-Basic Operation; Author: Michel van Biezen;https://www.youtube.com/watch?v=x2xxOKOTwM4;License: Standard YouTube License, CC-BY