Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.96P
To determine
The maximum amplitude of the sine wave that can be applied at the input of noninverting amplifier without clipping at the output. The cases to be considered are with and without capacitive coupling at the input.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For an op-amp having a slew rate of SR=3.6 V/us. What is the maximum voltage gain that is used when the input signal varies by 4.4 v in 9 us?
Q2) Why is there a difference between the theoretical
and practical values of voltage gain in an inverting and
non-inverting Op amplifier?
(c)
(d)
Figure
Figure Q1b shows an Op-amp with a bias current compensating resistor (Rp).
R₁
V₂.
Vp
IB.
R₂
W
A
• V₂
Figure Olb
(i)
Derive an expression for V. to quantify the effect of bias currents IB+ and
IB-.
[3]
(ii) Explain how you would choose a value for Rp to reduce the output error
due to the bias currents, IB+ and IB..
[3]
Referring to an op-amp define what is meant by common-mode rejection ratio
(CMRR) and explain the effect a finite CMRR would have on high-precision
applications.
[4]
Page 2 of 7
Continued overleaf
Chapter 2 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 2.1 - Prob. 2.1ECh. 2.1 - Prob. 2.2ECh. 2.1 - Prob. 2.3ECh. 2.2 - Prob. D2.4ECh. 2.2 - Prob. 2.5ECh. 2.2 - Prob. 2.6ECh. 2.2 - Prob. D2.7ECh. 2.2 - Prob. D2.8ECh. 2.3 - Prob. 2.9ECh. 2.3 - Prob. 2.10E
Ch. 2.3 - Prob. D2.11ECh. 2.3 - Prob. 2.12ECh. 2.3 - Prob. 2.13ECh. 2.3 - Prob. 2.14ECh. 2.4 - Prob. 2.15ECh. 2.4 - Prob. D2.16ECh. 2.4 - Prob. 2.17ECh. 2.5 - Prob. 2.18ECh. 2.5 - Prob. D2.19ECh. 2.5 - Prob. D2.20ECh. 2.6 - Prob. 2.21ECh. 2.6 - Prob. 2.22ECh. 2.6 - Prob. 2.23ECh. 2.6 - Prob. 2.24ECh. 2.6 - Prob. 2.25ECh. 2.7 - Prob. 2.26ECh. 2.7 - Prob. 2.27ECh. 2.7 - Prob. 2.28ECh. 2.8 - Prob. 2.29ECh. 2.8 - Prob. 2.30ECh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. D2.12PCh. 2 - Prob. D2.13PCh. 2 - Prob. D2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. D2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. D2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. D2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. D2.33PCh. 2 - Prob. D2.34PCh. 2 - Prob. D2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. D2.37PCh. 2 - Prob. D2.38PCh. 2 - Prob. D2.39PCh. 2 - Prob. D2.40PCh. 2 - Prob. D2.41PCh. 2 - Prob. D2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. D2.44PCh. 2 - Prob. D2.45PCh. 2 - Prob. D2.46PCh. 2 - Prob. D2.47PCh. 2 - Prob. D2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. D2.51PCh. 2 - Prob. D2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. D2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. D2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. D2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. D2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. D2.71PCh. 2 - Prob. 2.72PCh. 2 - Prob. 2.73PCh. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. D2.76PCh. 2 - Prob. 2.77PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. D2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. D2.82PCh. 2 - Prob. D2.83PCh. 2 - Prob. 2.84PCh. 2 - Prob. 2.85PCh. 2 - Prob. D2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - Prob. 2.89PCh. 2 - Prob. 2.90PCh. 2 - Prob. 2.91PCh. 2 - Prob. D2.92PCh. 2 - Prob. D2.93PCh. 2 - Prob. 2.94PCh. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - Prob. 2.97PCh. 2 - Prob. 2.98PCh. 2 - Prob. D2.99PCh. 2 - Prob. D2.100PCh. 2 - Prob. 2.101PCh. 2 - Prob. 2.102PCh. 2 - Prob. 2.103PCh. 2 - Prob. 2.104PCh. 2 - Prob. 2.105PCh. 2 - Prob. 2.106PCh. 2 - Prob. 2.107PCh. 2 - Prob. 2.108PCh. 2 - Prob. 2.109PCh. 2 - Prob. 2.110PCh. 2 - Prob. 2.111PCh. 2 - Prob. 2.112PCh. 2 - Prob. 2.113PCh. 2 - Prob. 2.114PCh. 2 - Prob. 2.115PCh. 2 - Prob. D2.116PCh. 2 - Prob. D2.117PCh. 2 - Prob. D2.118PCh. 2 - Prob. 2.119PCh. 2 - Prob. 2.120PCh. 2 - Prob. 2.121PCh. 2 - Prob. 2.122PCh. 2 - Prob. 2.123PCh. 2 - Prob. 2.124PCh. 2 - Prob. 2.125PCh. 2 - Prob. 2.126PCh. 2 - Prob. D2.127P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Choose the correct answer. *Please answer it ASAP if you can*arrow_forward2.17 An inverting op-amp circuit is fabricated with the resistors R, and R, having x% tolerance (i.e., the value of each resistance can deviate from the nominal value by as much as ±x%). What is the tolerance on the realized closed- loop gain? Assume the op amp to be ideal. If the nominal closed-loop gain is –100 V/V and x = 1, what is the range of gain values expected from such a circuit?arrow_forwardChoose the correct answer. *Please answer it ASAP if you can*arrow_forward
- A certain op-amp has three internal amplifier stages, with midrange gains of 30 dB, 40 dB, and 20 dB. Each stage also has a critical frequency associated with it as follows: f= 600 Hz, fcz = 50 kHz, and fc3 = 200 kHz. a. What is the midrange open-loop gain of the op-amp expressed in dB? b. What is the total phase shift through the amplifier, including inversion, when the signal frequency is 10 kHz?arrow_forwardFor the given four statements below, which of the following are true about an operational amplifier? i. When the input voltage applied at the non-inverting terminal of an op-amp, the amplified output voltage becomes 180° out of phase with the input. ii. When the input voltage applied at the inverting terminal of an op-amp, the amplified output voltage becomes in-phase with the input. iii. When the input voltage applied at the inverting terminal of an op-amp, the amplified output becomes 180° out of phase with the input. iv. When the input voltage applied at the non-inverting terminal of an op-amp, the amplified output becomes in-phase with the input. O i and iv O i and i O i and iv O i and iiarrow_forward3D Problem 1. (P1) Three op-amps are connected in cascade configuration. An 80 microVolts signal is connected to the non-inverting input of the first op-amp. Both the 2nd and 3rd op-amps operates as inverting amplifiers. All feedback resistors are 420 KOhms while the input resistances are 71.4kOhms, 19.1kOhms, and 14KOhms respectively. Determine the output of the third stage stage. a.9 V b.9000 mV c.79.2 V d.792 mVarrow_forward
- The following Operational Amplifier circuit is given. Analyze the circuit carefully to identify the functions (i.e., OP-AMP configurations) of each OP-Amps. Calculate the first stage output voltage Vx and then the output voltage at the output of the second stage Vo . Determine the currents I0, IF, and IX . Finally, determine the power absorbed by the resistor R7. The resistors: R2 = R4 =100 kiliohm. R1 = R3 = 10 kiliohm, R5 = 10 kiliohm, R6 = 90 kiliohm. and R5 = 10 kiliohm. The load resistor R7 = 10 kiliohm. The current source; I1 = 100μA and V2 = 1V.arrow_forwardAssume that the R2/R1 ratio of a feedback amplifier with voltage supply of +/- 10 V is 3.0 and that a value of 1.0 V is applied to the non inverting input of the op-amp. What is the output voltage value?arrow_forwardIn an inverting op-amp, has the following. Rf=20K, R1=5K and Vin=3 volts. What is the gain of this Amplifier?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Multistage Transistor Audio Amplifier Circuit; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=LJrL9N9uhkE;License: Standard Youtube License