Atkins' Physical Chemistry
Atkins' Physical Chemistry
11th Edition
ISBN: 9780198769866
Author: ATKINS, P. W. (peter William), De Paula, Julio, Keeler, JAMES
Publisher: Oxford University Press
Question
Book Icon
Chapter 2, Problem 2D.3P

(a)

Interpretation Introduction

Interpretation: The expression for dV and dp has to be stated using the relation that V is a function of p and T and p is a function of V and T.

Concept introduction: The expansion coefficient is defined as the fraction change in volume with respect to change in temperature.  Thus, it defines the change in size on changing temperature.  This is represented by the formula given below as,

  α=1V(VT)p

The isothermal compressibility is defined as the fraction change in volume with respect to change in pressure.  This is represented by the formula given below as,

  κT=1V(Vp)T

(b)

Interpretation Introduction

Interpretation: The expression for dlnV and dlnp in terms of expansion coefficient and isothermal compressibility has to be stated.

Concept introduction: The expansion coefficient is defined as the fraction change in volume with respect to change in temperature.  Thus, it defines the change in size on changing temperature.  This is represented by the formula given below as,

  α=1V(VT)p

The isothermal compressibility is defined as the fraction change in volume with respect to change in pressure.  This is represented by the formula given below as,

  κT=1V(Vp)T

Blurred answer
Students have asked these similar questions
4) Which oxygen atom in the structure below is most basic / nucleophilic? Please explain by discussing the electron density around each oxygen atom. Show at least three resonance structures for the compound. оого
Can you show me this problem. Turn them into lewis dot structures for me please and then answer the question because I cant seem to comprehend it/ The diagrams on the picture look too small I guess.
The fire releases 2.80 x 107 Joules of heat energy for each liter of oil burned. The water starts out at 24.5 °C, raising the water's temperature up to 100 °C, and then raises the temperature of the resulting steam up to 325 °C. How many liters of water will be needed to absorb the heat from the fire in this way, for each 1.0 liter of crude oil burned? 4186 J/(kg°C) = heat of water 2020 J/(kg°C) = heat of steam 2,256,000 (i.e. 2.256 x 106) J/kg = latent heat of vaporization for water (at the boiling point of 100 °C).

Chapter 2 Solutions

Atkins' Physical Chemistry

Ch. 2 - Prob. 2A.4DQCh. 2 - Prob. 2A.5DQCh. 2 - Prob. 2A.1AECh. 2 - Prob. 2A.1BECh. 2 - Prob. 2A.2AECh. 2 - Prob. 2A.2BECh. 2 - Prob. 2A.3AECh. 2 - Prob. 2A.3BECh. 2 - Prob. 2A.4AECh. 2 - Prob. 2A.4BECh. 2 - Prob. 2A.5AECh. 2 - Prob. 2A.5BECh. 2 - Prob. 2A.6AECh. 2 - Prob. 2A.6BECh. 2 - Prob. 2A.1PCh. 2 - Prob. 2A.2PCh. 2 - Prob. 2A.3PCh. 2 - Prob. 2A.4PCh. 2 - Prob. 2A.5PCh. 2 - Prob. 2A.6PCh. 2 - Prob. 2A.7PCh. 2 - Prob. 2A.8PCh. 2 - Prob. 2A.9PCh. 2 - Prob. 2A.10PCh. 2 - Prob. 2B.1DQCh. 2 - Prob. 2B.2DQCh. 2 - Prob. 2B.1AECh. 2 - Prob. 2B.1BECh. 2 - Prob. 2B.2AECh. 2 - Prob. 2B.2BECh. 2 - Prob. 2B.3AECh. 2 - Prob. 2B.3BECh. 2 - Prob. 2B.4AECh. 2 - Prob. 2B.4BECh. 2 - Prob. 2B.1PCh. 2 - Prob. 2B.2PCh. 2 - Prob. 2B.3PCh. 2 - Prob. 2B.4PCh. 2 - Prob. 2B.5PCh. 2 - Prob. 2C.1DQCh. 2 - Prob. 2C.2DQCh. 2 - Prob. 2C.3DQCh. 2 - Prob. 2C.4DQCh. 2 - Prob. 2C.1AECh. 2 - Prob. 2C.1BECh. 2 - Prob. 2C.2AECh. 2 - Prob. 2C.2BECh. 2 - Prob. 2C.3AECh. 2 - Prob. 2C.3BECh. 2 - Prob. 2C.4AECh. 2 - Prob. 2C.4BECh. 2 - Prob. 2C.5AECh. 2 - Prob. 2C.5BECh. 2 - Prob. 2C.6AECh. 2 - Prob. 2C.6BECh. 2 - Prob. 2C.7AECh. 2 - Prob. 2C.7BECh. 2 - Prob. 2C.8AECh. 2 - Prob. 2C.8BECh. 2 - Prob. 2C.1PCh. 2 - Prob. 2C.2PCh. 2 - Prob. 2C.3PCh. 2 - Prob. 2C.4PCh. 2 - Prob. 2C.5PCh. 2 - Prob. 2C.6PCh. 2 - Prob. 2C.7PCh. 2 - Prob. 2C.8PCh. 2 - Prob. 2C.9PCh. 2 - Prob. 2C.10PCh. 2 - Prob. 2C.11PCh. 2 - Prob. 2D.1DQCh. 2 - Prob. 2D.2DQCh. 2 - Prob. 2D.1AECh. 2 - Prob. 2D.1BECh. 2 - Prob. 2D.2AECh. 2 - Prob. 2D.2BECh. 2 - Prob. 2D.3AECh. 2 - Prob. 2D.3BECh. 2 - Prob. 2D.4AECh. 2 - Prob. 2D.4BECh. 2 - Prob. 2D.5AECh. 2 - Prob. 2D.5BECh. 2 - Prob. 2D.1PCh. 2 - Prob. 2D.2PCh. 2 - Prob. 2D.3PCh. 2 - Prob. 2D.4PCh. 2 - Prob. 2D.5PCh. 2 - Prob. 2D.6PCh. 2 - Prob. 2D.7PCh. 2 - Prob. 2D.8PCh. 2 - Prob. 2D.9PCh. 2 - Prob. 2E.1DQCh. 2 - Prob. 2E.2DQCh. 2 - Prob. 2E.1AECh. 2 - Prob. 2E.1BECh. 2 - Prob. 2E.2AECh. 2 - Prob. 2E.2BECh. 2 - Prob. 2E.3AECh. 2 - Prob. 2E.3BECh. 2 - Prob. 2E.4AECh. 2 - Prob. 2E.4BECh. 2 - Prob. 2E.5AECh. 2 - Prob. 2E.5BECh. 2 - Prob. 2E.1PCh. 2 - Prob. 2E.2PCh. 2 - Prob. 2.1IACh. 2 - Prob. 2.3IACh. 2 - Prob. 2.4IACh. 2 - Prob. 2.5IACh. 2 - Prob. 2.6IACh. 2 - Prob. 2.7IA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY