Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 36E
To determine
To Find: The velocity of the plane so that the observer at the ground will see the length contraction of the plane by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Modern Physics
Ch. 2 - Explain to your friend, who is willing to accept...Ch. 2 - A friend says, “It makes no sense that Anna could...Ch. 2 - The Lorentz transformation equations have x and t...Ch. 2 - You are gliding over Earth’s surface at a high...Ch. 2 - A thin plate has a round hole whose diameter in...Ch. 2 - In the twin paradox situation, a fellow student...Ch. 2 - Does the asymmetric aging of an Earthbound...Ch. 2 - You are floating in space when you notice a flying...Ch. 2 - Prob. 9CQCh. 2 - A relativity enthusiast says, “If E=mc2 and energy...
Ch. 2 - Prob. 11CQCh. 2 - Prob. 12CQCh. 2 - Two objects isolated from the rest of the universe...Ch. 2 - Particles of light have no mass. Does the Sun’s...Ch. 2 - Prob. 15CQCh. 2 - In a television picture tube, a beam of electrons...Ch. 2 - Prob. 17ECh. 2 - Verify that the special case x=vt,x=0 leads to...Ch. 2 - If an object actually occupies less space...Ch. 2 - Through a window in Carl’s spaceship, passing at...Ch. 2 - According to an observer on Earth, a spacecraft...Ch. 2 - According to Bob on Earth, Planet Y (uninhabited)...Ch. 2 - Anna is on a railroad flatcar moving at 0.6c...Ch. 2 - A polevaulter holds a 16 ft. pole. A barn has...Ch. 2 - Anna and Bob are in identical spaceships, each 100...Ch. 2 - Bob is watching Anna fly by in her new highspeed...Ch. 2 - Rob and Bob Jr. stand at open doorways at opposite...Ch. 2 - The diagram shows Bob’s view of the passing of two...Ch. 2 - Refer to Figure 2.18. (a) How long is a spaceship?...Ch. 2 - You are in a bus traveling on a straight road at...Ch. 2 - A spaceship travels at 0.8c. As this spaceship...Ch. 2 - You are on a highspeed train, traveling at a...Ch. 2 - A famous experiment detected 527 muons per hour at...Ch. 2 - In the frame in which they are at rest, the number...Ch. 2 - A supersonic plane travels at 420 m/s. As this...Ch. 2 - Prob. 36ECh. 2 - According to Bob, on Earth, it is 20 ly to Planet...Ch. 2 - A plank, fixed to a sled at rest in frame S, is of...Ch. 2 - Bob in frame S, is observing the moving plank of...Ch. 2 - An experimenter determines that a particle created...Ch. 2 - A muon has a mean lifetime of 2.2s in its rest...Ch. 2 - A pion is an elementary particle that, on averages...Ch. 2 - Anna and Bob have identical spaceships 60 m long....Ch. 2 - Demonstrate that equations (212) and (213) become...Ch. 2 - Planet W is 12 ly from Earth. Anna and Bob are...Ch. 2 - Anna and Bob are both born just as Anna’s...Ch. 2 - Consider Anna, Bob, and Carl in the twin paradox....Ch. 2 - You stand at the center of your 100 m spaceship...Ch. 2 - From a standstill, you begin jogging at 5 m/s...Ch. 2 - A meterstick is glued to the wall with its 100 cm...Ch. 2 - Prob. 51ECh. 2 - By what factor would a star’s characteristic...Ch. 2 - At rest, a light source emits 532 nm light. (a) As...Ch. 2 - The light from galaxy NGC 221 consists of a...Ch. 2 - A space probe has a powerful light beacon that...Ch. 2 - Prob. 56ECh. 2 - Prob. 57ECh. 2 - To catch speeders, a police radar gun detects the...Ch. 2 - Bob is on Earth. Anna is on a spacecraft moving...Ch. 2 - According to Anna, on Earth, Bob is on a spaceship...Ch. 2 - Prove that if v and u are less than c, it is...Ch. 2 - In a particle collider experiment, particle 1 is...Ch. 2 - A light beam moves in the xyplane and has an...Ch. 2 - A light beam moves at an angle ? with the xaxis as...Ch. 2 - You tire a light signal at 60° north of west. (a)...Ch. 2 - At t=0 , a bright beacon at the origin flashes,...Ch. 2 - Prob. 67ECh. 2 - By applying the relativistic velocity...Ch. 2 - Prob. 69ECh. 2 - What are the momentum, energy, and kinetic energy...Ch. 2 - What would be the internal energy, kinetic energy,...Ch. 2 - By how much (in picograms) does the mass of 1 mol...Ch. 2 - Prob. 73ECh. 2 - A typical household uses 500 kWh of energy in 1...Ch. 2 - Prob. 75ECh. 2 - Prob. 76ECh. 2 - Prob. 77ECh. 2 - Show that the relativistic expression for kinetic...Ch. 2 - At Earth’s location, the intensity of sunlight is...Ch. 2 - Prob. 80ECh. 2 - Prob. 81ECh. 2 - Prob. 82ECh. 2 - How fast must an object be moving for its kinetic...Ch. 2 - How much work must be done to accelerate an...Ch. 2 - An electron accelerated from rest through a...Ch. 2 - What is the momentum of a proton accelerated...Ch. 2 - A proton is accelerated from through a potential...Ch. 2 - xzA particle of mass m0 moves the lab at 0.6c....Ch. 2 - 89. The boron14 nucleus (mass: 14.02266 u) “beta...Ch. 2 - A 3.000 u object moving to the right through a...Ch. 2 - A 10 kg object is moving to the right at 0.6c. It...Ch. 2 - Particle 1, of mass m1 , moving at 0.8c relative...Ch. 2 - Consider the collisions of two identical...Ch. 2 - A kaon (denoted K0 ) ¡s an unstable particle mass...Ch. 2 - In the frame of reference shown, a stationary...Ch. 2 - Prob. 96ECh. 2 - Show that E2=p2c2+m2c4 follows from expressions...Ch. 2 - Equation (2-30) is an approximation correct only...Ch. 2 - According to an observer at Earth’s equator, by...Ch. 2 - If it is fundamental to nature that a given mass...Ch. 2 - Prob. 101ECh. 2 - Suppose particles begin moving in one dimension...Ch. 2 - Prob. 103ECh. 2 - From the Lorentz transformation equations, show...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - For the situation given in Exercise 22, find the...Ch. 2 - Show that equation (236) follows from the...Ch. 2 - A 1 kg object moves at 0.8crelative to Earth. (a)...Ch. 2 - From p=umu (i.e., px=umux , py=umuy , and pz=umuz...Ch. 2 - Prob. 110ECh. 2 - An object of mass 3m0 moves to the right at...Ch. 2 - Prob. 112ECh. 2 - Derive the following expressions for the...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - A point charge +q rests halfway between two steady...Ch. 2 - Prob. 116CECh. 2 - Prob. 117CECh. 2 - A rocket maintains a constant thrust F, giving it...Ch. 2 - Exercise 117 gives the speed u of an object...Ch. 2 - In Example 2.5, we noted that Anna could go...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the primed and laboratory observers want to measure the length of a rod that rests on the ground horizontally in the space between the helicopter and the tower (Fig. 39.8B). To derive the length transformation L = L (Eq. 39.5), we had to assume that the positions of the two ends were determined simultaneously. What happens to the length transformation equation if both observers measure the end below the helicopter at one time t1 and the other end at a later time t2?arrow_forwardAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forwardA spacecraft zooms past the Earth with a constant velocity. An observer on the Earth measures that an undamaged clock on the spacecraft is ticking at one-third the rate of an identical clock on the Earth. What does an observer on the spacecraft measure about the Earth-based clocks ticking rate? (a) It runs more than three times faster than his own clock. (b) It runs three times faster than his own. (c) It runs at the same rate as his own. (d) It runs at one-third the rate of his own. (e) It runs at less than one-third the rate of his own.arrow_forward
- A box is cubical with sides of proper lengths L1 = L2 = L3, as shown in Figure P26.14, when viewed in its own rest frame. If this block moves parallel to one of its edges with a speed of 0.80c past an observer, (a) what shape does it appear to have to this observer? (b) What is the length of each side as measured by the observer? Figure P26.14arrow_forwardThe mass of the fuel in a nuclear reactor decreases by an observable amount as it puts out energy. Is the same true for the coal and oxygen combined in a conventional power plant? If so, is this observable in practice for the coal and oxygen? Explain.arrow_forwardA spacecraft moves at a speed of 0.900c. If its length is L as measured by an observer on the spacecraft, what is the length measured by a ground observer?arrow_forward
- Two astronomical events are observed to occur at a time of 0.30 s apart and a distance separation of 2.0109m from each other. How fast must a spacecraft travel from the site of one event toward the other to make the events occur at the same time when measured in the frame of reference of the spacecraft?arrow_forwardThe muon is an unstable particle that spontaneously decays into an electron and two neutrinos. If the number of muons at t = 0 is N0, the number at time t is given by , where τ is the mean lifetime, equal to 2.2 μs. Suppose the muons move at a speed of 0.95c and there are 5.0 × 104 muons at t = 0. (a) What is the observed lifetime of the muons? (b) How many muons remain after traveling a distance of 3.0 km?arrow_forwardThe light from a heated atomic gas is shifted in frequency because of the random thermal motion of light-emitting atoms toward or away from an observer. Estimate the fractional Doppler shift (f/f0), assuming that light of frequency f0 is emitted in the rest frame of each atom, that the light-emitting atoms are iron atoms in a star at temperature 6000 K, and that the atoms are moving relative to an observer with the mean speed =8kBTm Must we use the relativistic Doppler shift formulas f=f01/c1/c for this calculation? Such thermal Doppler shifts are measurable and are used to determine stellar surface temperatures.arrow_forward
- Two powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward(a) What is the approximate speed relative to us of a galaxy near the edge of the known universe, some 10 Gly away? (b) What traction of the speed of light is this? Note that we have observed galaxies moving away from us at greater than 0.9c.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College