Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.22P
A cylindrical liquid oxygen (LOX) tank has a diameter of 1.22 m, a length of 6.1 m, and hemispherical ends. The boiling point of LOX is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In boiling water at 1 atm pressure outside a stainless-steel tube with a surface temperature of 410F, the heat-transfer coefficient h in the absence of radiation is 32 Btu/h*ft^2*F. If the emissivity of the stainless steel is 0.8, will radiation significantly augment the rate of boiling (e.g., by more than 5 percent)? Assume that the vapor film is transparent to radiation and the boiling liquid is opaque.
Huryy!!
Which mode or condensation is characterized by larger heat transfer rates?
Chapter 2 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 2 - A plane wall, 7.5 cm thick, generates heat...Ch. 2 -
2.2 A small dam, which is idealized by a large...Ch. 2 - 2.3 The shield of a nuclear reactor is idealized...Ch. 2 - A plane wall 15 cm thick has a thermal...Ch. 2 - 2.5 Derive an expression for the temperature...Ch. 2 - A plane wall of thickness 2L has internal heat...Ch. 2 - 2.7 A very thin silicon chip is bonded to a 6-mm...Ch. 2 - 2.9 In a large chemical factory, hot gases at 2273...Ch. 2 - 2.14 Calculate the rate of heat loss per foot and...Ch. 2 - 2.15 Suppose that a pipe carrying a hot fluid with...
Ch. 2 - Prob. 2.16PCh. 2 - Estimate the rate of heat loss per unit length...Ch. 2 - The rate of heat flow per unit length q/L through...Ch. 2 - A 2.5-cm-OD, 2-cm-ID copper pipe carries liquid...Ch. 2 - A cylindrical liquid oxygen (LOX) tank has a...Ch. 2 - Show that the rate of heat conduction per unit...Ch. 2 - Derive an expression for the temperature...Ch. 2 - Heat is generated uniformly in the fuel rod of a...Ch. 2 - 2.29 In a cylindrical fuel rod of a nuclear...Ch. 2 - 2.30 An electrical heater capable of generating...Ch. 2 - A hollow sphere with inner and outer radii of R1...Ch. 2 - 2.34 Show that the temperature distribution in a...Ch. 2 -
2.38 The addition of aluminum fins has been...Ch. 2 - The tip of a soldering iron consists of a 0.6-cm-...Ch. 2 - One end of a 0.3-m-long steel rod is connected to...Ch. 2 - Both ends of a 0.6-cm copper U-shaped rod are...Ch. 2 - 2.42 A circumferential fin of rectangular cross...Ch. 2 - 2.43 A turbine blade 6.3 cm long, with...Ch. 2 - 2.44 To determine the thermal conductivity of a...Ch. 2 - 2.45 Heat is transferred from water to air through...Ch. 2 - 2.46 The wall of a liquid-to-gas heat exchanger...Ch. 2 - Prob. 2.47PCh. 2 - The handle of a ladle used for pouring molten lead...Ch. 2 - 2.50 Compare the rate of heat flow from the bottom...Ch. 2 - 2.51 Determine by means of a flux plot the...Ch. 2 - Prob. 2.52PCh. 2 - Determine the rate of heat transfer per meter...Ch. 2 - Prob. 2.54PCh. 2 - 2.55 A long, 1-cm-diameter electric copper cable...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A copper rod, an aluminum rod, and a brass, each 6.00 m length and 1.00 cm diameter, are placed end to end with the aluminum rod between the other two. The free end of the copper rod is maintained at water’s boiling point, and the free end of the brass rod is maintained at water’s freezing point. If T1 and T2 are steady-state temperature copper-aluminum junction and aluminum-brass junction respectively. Where TC is temp at freezing point of water and TH is temp at boiling point of water. Show that the steady-state temperature for (a) the aluminum-brass junction is:arrow_forwardDiscuss the assumptions made in the Nusselt’s theory of film condensation on a vertical plate.arrow_forwardA horizontal pipe of 125-mm-diamter and 1 m long with a surface temperature of 95 ℃ is used to condense saturated steam at 1 atm. Determine the heat transfer rate for the condensation process. Properties of Water, vapor (1 atm): Tsat = 100℃, ρv = 0.596 kg/m3, hfg = 2257 kJ/kg; Water, liquid (Tf = 370K): ρl = 960.6 kg/m3, Cpl = 4214 J/kg.K, μl = 289*10^-6 N.s/m2, kl = 0.679 W/m.K.arrow_forward
- A horizontal pipe of 100-mm-diamter and 1 m long with a surface temperature of 94 ℃ is used to condense saturated steam at 1 atm. Determine the heat transfer rate for the condensation process. Properties of Water, vapor (1 atm): Tsat = 100℃, ρv = 0.596 kg/m3, hfg = 2257 kJ/kg;Water, liquid (Tf = 370K): ρl = 960.6 kg/m3, Cpl = 4214 J/kg.K, μl = 289*10^-6 N.s/m2, kl = 0.679 W/m.K. Select one: a. 28567 W b. 18254 W c. 19076 W d. 22552 Warrow_forwardGood Day, Kindly help me with this problem, Thank you P.S. T= 30 degreesarrow_forwardAcertain superinsulation material having a thermal conductivity of 2*10^-4 W/m*^ C is used to insulate a tank of liquid nitrogen that is maintained at - 196 degrees * C : 199 kJ is required to vaporize each kilogram mass of nitrogen at this temperature. Assuming that the tank is a sphere having an inner diameter (ID) of 0.52 m, estimate the amount of nitrogen vaporized per day for an insulation thickness of 2.5 cm and an ambient temperature of 21 degrees * C . Assume that the outer temperature of the insulation is 21 degrees * C .arrow_forward
- A- Cylinder has a 0.Im in length and 0.1min diameter, is nitially at 292 K. It is suspended in a steam environment where water vapor at 373 K condenses on all surfaces with an effective film coefficient, h, of 8500W/m2 K. Determine the time required for the center of this stubby cylinder to reach 310 K. If the cylinder were sufficiently long so that it could be considered infinite, how long would it take?arrow_forwardThe condensation process of vapors on the outside of horizontal tube banks is described by the equation below, NNU = 0.725 (g p² hfg Do³) μ Δt Ν κ At 45 C R-22 properties are: Density, p Dynamic viscosity, μ Latent heat, hfg Thermal conductivity, k where N tubes/row At = hfg AT = difference between wall surface & R-22 NNu Refrigerant - 22 condenser operating at 45 C cooled with water from cooling tower entering at 30 C and leaves at 36 C. The condenser is shell-tube type with copper tubes of 14 mm ID & 16 mm OD arranged with 3 tubes per row (N). a) Compute the convective heat transfer of R-22 in W/m²K. = 1,109 kg/m³ 0.00018 Pa s 160.9 kJ/kg 0.0779 W/m K (*50-45) = 5 C (*from sample problem #2 pipe wall temperature) diff. of temp between wall & fluid latent heat of condensation generally a function of (NR₂. Npr) D/ karrow_forwardI need the solution in hand writing ..arrow_forward
- The boiling temp of nitrogen at 1 atm is -196°C. The temp of liquid nitrogen in a tank open to the atmosphere at sea level will remain constant until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m² at 1 atm. Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196°C. The tank is exposed to ambient air at 15°C, with a convection heat transfer coefficient of 35 W/m?-K. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of evaporation of the liquid nitrogen in the tank as a result of heat transfer N, vapor from the ambient air if the tank is (a) not insulated, (b) insulated with 5- T= 15°C cm thick fiberglass insulation (k=0.035 W/m-K) and (c) insulated with 2- cm thick super-insulation which has an effective thermal…arrow_forwardQuestion : Studies show that the major energy consumption in Fijian villages is wood which is used for cooking over open fires. Typical consumption of wood is 1 kg person–1day–1. (a) Estimate the heat energy required to boil a 2-liter pot full of water. Assuming this to be the cooking requirement of each person, compare this with the heat content of the wood, and thus estimate the thermal efficiency of the open fire. (b) How much timber has to be felled each year to cook for a village of 200 people?Assuming systematic replanting, what area of crop must the village therefore set aside for fuel use if it is not to make a net deforestation? Hint: refer to Table 10.4. (c) Comment on the realism of the assumptions made, and revise your estimates accordingly. Answer: (a) mcDT ≈ 0.6 MJ (heat losses from pot imply actual requirement is higher). h ≈ 3%. (b) 70 tonnes; 7 ha.arrow_forwardWater is boiled at 250°F by a 2-ft-long and 0.5-in diameter nickel-plated electric heating element maintained at 280°F. Determine (a) the boiling heat transfer coefficient, (b) the electric power consumed by the heating element, and (c) the rate of evaporation of water.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license