Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.2P
A small dam, which is idealized by a large slab 1.2 m thick, is to be completely poured in a short Period of time. The hydration of the concrete results in the equivalent of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 16°C, determine the maximum temperature to which the concrete will be subjected, assuming steady-state conditions. The thermal conductivity of the wet concrete can be taken as 0.84 W/m K.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
. A small dam, which can be idealized by a large slab 1.2-m thick, is to be completely poured in a short period of time. The hydration of the concrete results in the equivalent of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 16°C, determine the maximum temperature to which the concrete will be subjected, assuming steady-state conditions. The thermal conductivity of the wet concrete can be taken as 0.84 W/m3. Suatu pelat datar dari besi dari seterika listrik berdaya 1200-
Most automobiles have a coolant reservoir to catch radiator fluid that may overflow when the engine is hot. Such a radiator, made of copper, is filled to its 12-L capacity when at 10.0°C.
-What volume of radiator fluid, in liters, will overflow when the radiator and fluid reach their 99.5°C operating temperature, given that the fluid’s thermal coefficient of volume expansion is 400.0 × 10-6 / °C? The coefficient of volume expansion for copper is 5.1 × 10-5 /°C.
Hi, can you help me with the following problem?
A thermally insulated tank of water 2 m x 2 m, depth 1 m is stirred with a paddle for threehours. If the paddle is driven by a motor whose shaft power is 8 kW determine the rate ofchange of temperature in degrees C per hr and the increase in temperature of the water.The specific heat of water is 4200 J/kgC. Identify a system and start your analysis from anappropriate form of the Fist Law of Thermodynamics
Chapter 2 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 2 - A plane wall, 7.5 cm thick, generates heat...Ch. 2 -
2.2 A small dam, which is idealized by a large...Ch. 2 - 2.3 The shield of a nuclear reactor is idealized...Ch. 2 - A plane wall 15 cm thick has a thermal...Ch. 2 - 2.5 Derive an expression for the temperature...Ch. 2 - A plane wall of thickness 2L has internal heat...Ch. 2 - 2.7 A very thin silicon chip is bonded to a 6-mm...Ch. 2 - 2.9 In a large chemical factory, hot gases at 2273...Ch. 2 - 2.14 Calculate the rate of heat loss per foot and...Ch. 2 - 2.15 Suppose that a pipe carrying a hot fluid with...
Ch. 2 - Prob. 2.16PCh. 2 - Estimate the rate of heat loss per unit length...Ch. 2 - The rate of heat flow per unit length q/L through...Ch. 2 - A 2.5-cm-OD, 2-cm-ID copper pipe carries liquid...Ch. 2 - A cylindrical liquid oxygen (LOX) tank has a...Ch. 2 - Show that the rate of heat conduction per unit...Ch. 2 - Derive an expression for the temperature...Ch. 2 - Heat is generated uniformly in the fuel rod of a...Ch. 2 - 2.29 In a cylindrical fuel rod of a nuclear...Ch. 2 - 2.30 An electrical heater capable of generating...Ch. 2 - A hollow sphere with inner and outer radii of R1...Ch. 2 - 2.34 Show that the temperature distribution in a...Ch. 2 -
2.38 The addition of aluminum fins has been...Ch. 2 - The tip of a soldering iron consists of a 0.6-cm-...Ch. 2 - One end of a 0.3-m-long steel rod is connected to...Ch. 2 - Both ends of a 0.6-cm copper U-shaped rod are...Ch. 2 - 2.42 A circumferential fin of rectangular cross...Ch. 2 - 2.43 A turbine blade 6.3 cm long, with...Ch. 2 - 2.44 To determine the thermal conductivity of a...Ch. 2 - 2.45 Heat is transferred from water to air through...Ch. 2 - 2.46 The wall of a liquid-to-gas heat exchanger...Ch. 2 - Prob. 2.47PCh. 2 - The handle of a ladle used for pouring molten lead...Ch. 2 - 2.50 Compare the rate of heat flow from the bottom...Ch. 2 - 2.51 Determine by means of a flux plot the...Ch. 2 - Prob. 2.52PCh. 2 - Determine the rate of heat transfer per meter...Ch. 2 - Prob. 2.54PCh. 2 - 2.55 A long, 1-cm-diameter electric copper cable...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please help with assumptions and fbdarrow_forward6. A cylindrical electric heater of outside diameter D = 2.5 cm and length L= 2 m is immersed horizontally into a pool of mercury at 100°C. If the surface of the heater is maintained at an average temperature of 300°C, calculate the rate of heat transfer to the mercury.arrow_forwardSolve Question -3arrow_forward
- I would like to ask for your expertise in this problem. Thank youarrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not be disturbed by hand contact. In this case, determine the insulation material thickness to be used. Insulation material thermal conductivity coefficient is 0.066 insulation W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forwardQ2 A 2 kW resistance heater wire with thermal conductivity of k = 20 W/m °C, a diameter of D = 5 mm, and a length of L= 0.7 m is used to boil water. If the outer surface temperature of the resistance wire is Ts= 110°C, determine the temperature at the center of the wire. Q3: Consider a 20-cm-thick large concrete plane wall (k = 0.77 W/m °C) subjected to convection on both sides with T1 = 27°C and h₁ = 5 W/m² °C on the inside, and T2 = 8°C and h₂ = 12 W/m² °C on the outside. Assuming constant thermal conductivity with no heat generation and negligible radiation, (a) express the differential equations and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the temperatures at the inner and outer surfaces of the wall. Ans: (a) Ans: 121.4 °C dT (L) -k dx -=h₂ [T(L)-T₂] (b) T(x) = 20-45.44x Q4: A double pane window consists of 3 mm thick…arrow_forward
- 5. Consider a stainless-steel spoon (k = 8.7 Btu/h-ft-°F) partially immersed in boiling water at 200 °F in a kitchen at 75 °F. The handle of the spoon has a cross section of 0.08 in. × 0.5 in., and extends 7 in. in the air from the free surface of the water. If the heat transfer coefficient at the exposed surfaces of the spoon handle is 3 Btu/h ft².°F:arrow_forwardA house has a three meter deep basement (foundation) wall that is in a 10 meter by eight meter rectangular shape based on interior dimensions. On average, 2.5 meters of the wall is below grade. Assume the outside air temperature is 38°C and the inside temperature is 20°C; there is an average ground temperature of 27°C. Determine the rate of heat loss through the wall if it is insulated with an R-value of about 30°C.m^2/W.arrow_forwardA 12-by-12 in. open pan containing water at 140 °F is placed in the exact center of a 16-by-20 ft room having a ceiling temperature of 75°F. If the distance from the water surface to the ceiling is 10 ft and the ceiling is painted with an oil paint, what is the net radiant-heat exchange between the water surface and the ceiling?arrow_forward
- H.W. Q: An aluminum pan whose thermal conductivity is 237 W/m-°C has a flat bottom with diameter 20 cm and thickness 0.4 cm. Heat is transferred steadily to boiling water in the pan through its bottom at a rate of 800 W. If the inner surface of the bottom of the pan is at 105°C, determine the temperature of the outer surface of the bottom of the pan. 105°C 0.4 cm Answer: T= 105.43 °C 800 W 7arrow_forwardA food product with 82% moisture content is being frozen. Estimate the specific heat of the product at -8°C when 82% of the water is in a frozen state. The specific heat of dry product solid is 2.5 kJ/(kg °C). Assume specific heat of water at -10°C is similar to specific heat of water at 0°C.arrow_forwardQ3/A sphere of 30 mm diameter has its surface maintained at 80°C while being immersed in still water at 20°C. Determine the power required to maintain the temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license