Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.16P
To determine
The increase in heat transfer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In boiling water at 1 atm pressure outside a stainless-steel tube with a surface temperature of 410F, the heat-transfer coefficient h in the absence of radiation is 32 Btu/h*ft^2*F. If the emissivity of the stainless steel is 0.8, will radiation significantly augment the rate of boiling (e.g., by more than 5 percent)? Assume that the vapor film is transparent to radiation and the boiling liquid is opaque.
Water at atmospheric pressure is boiled in a container using a horizontal 8 mm electric wire (ε=0.9) whose temperature is maintained by an electric current at 250oC. Estimate the boiling heat transfer coefficient between the water and the wire surface. Properties of Water, liquid: ρl = 957.9 kg/m3, hfg = 2257 kJ/kg, vapor: ρv = 4.8 kg/m3, Cp,v = 2560 J/kg.K, μv = 14.85*10-6 N.s/m2, kv=0.0331 W/mK.
Select one:
a. 247 W/m2K
b. 440 W/m2K
c. 90.7 W/m2K
d. 710 W/m2K
Water is to be boiled at atmospheric pressure in a polished copper pan by means of an electric heater. The diameter of the pan is 0.51 m and is kept at 111 deg C. What is the power required to boil the water? Tsat = 100°C; Properties of water at 100°C: Density, ρl= 961 kg/m3; Kinematic viscosity, ν = 0.293x10-6 m2/s; Prandtl Number, Pr = 1.740; Specific heat, Cpl = 4216 J/kg.K; Dynamic viscosity, μ = ρ × ν = 961 × 0.293 × 10-6 = 281.57 x10-6 Ns/m2; hfg = 2256.9 kJ/kg; ρv = 0.597 kg/m3; σ = 0.0588 N/m; Csf=0.013; n=1;
Select one:
a. 25964.0356
b. 52997.1101
c. 49373.4011
d. 38911.7986
Chapter 2 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 2 - A plane wall, 7.5 cm thick, generates heat...Ch. 2 -
2.2 A small dam, which is idealized by a large...Ch. 2 - 2.3 The shield of a nuclear reactor is idealized...Ch. 2 - A plane wall 15 cm thick has a thermal...Ch. 2 - 2.5 Derive an expression for the temperature...Ch. 2 - A plane wall of thickness 2L has internal heat...Ch. 2 - 2.7 A very thin silicon chip is bonded to a 6-mm...Ch. 2 - 2.9 In a large chemical factory, hot gases at 2273...Ch. 2 - 2.14 Calculate the rate of heat loss per foot and...Ch. 2 - 2.15 Suppose that a pipe carrying a hot fluid with...
Ch. 2 - Prob. 2.16PCh. 2 - Estimate the rate of heat loss per unit length...Ch. 2 - The rate of heat flow per unit length q/L through...Ch. 2 - A 2.5-cm-OD, 2-cm-ID copper pipe carries liquid...Ch. 2 - A cylindrical liquid oxygen (LOX) tank has a...Ch. 2 - Show that the rate of heat conduction per unit...Ch. 2 - Derive an expression for the temperature...Ch. 2 - Heat is generated uniformly in the fuel rod of a...Ch. 2 - 2.29 In a cylindrical fuel rod of a nuclear...Ch. 2 - 2.30 An electrical heater capable of generating...Ch. 2 - A hollow sphere with inner and outer radii of R1...Ch. 2 - 2.34 Show that the temperature distribution in a...Ch. 2 -
2.38 The addition of aluminum fins has been...Ch. 2 - The tip of a soldering iron consists of a 0.6-cm-...Ch. 2 - One end of a 0.3-m-long steel rod is connected to...Ch. 2 - Both ends of a 0.6-cm copper U-shaped rod are...Ch. 2 - 2.42 A circumferential fin of rectangular cross...Ch. 2 - 2.43 A turbine blade 6.3 cm long, with...Ch. 2 - 2.44 To determine the thermal conductivity of a...Ch. 2 - 2.45 Heat is transferred from water to air through...Ch. 2 - 2.46 The wall of a liquid-to-gas heat exchanger...Ch. 2 - Prob. 2.47PCh. 2 - The handle of a ladle used for pouring molten lead...Ch. 2 - 2.50 Compare the rate of heat flow from the bottom...Ch. 2 - 2.51 Determine by means of a flux plot the...Ch. 2 - Prob. 2.52PCh. 2 - Determine the rate of heat transfer per meter...Ch. 2 - Prob. 2.54PCh. 2 - 2.55 A long, 1-cm-diameter electric copper cable...Ch. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 2.5-cm-OD, 2-cm-ID copper pipe carries liquid oxygen to the storage site of a space shuttle at -183Cand0.04m3/min. The ambient air is at 21C and has a dew point of 10C. How much insulation with a thermal conductivity of 0.02 W/m K is needed to prevent condensation on the exterior of the insulation if hc+h=17W/m2 K on the outside?arrow_forwardA copper rod, an aluminum rod, and a brass, each 6.00 m length and 1.00 cm diameter, are placed end to end with the aluminum rod between the other two. The free end of the copper rod is maintained at water’s boiling point, and the free end of the brass rod is maintained at water’s freezing point. If T1 and T2 are steady-state temperature copper-aluminum junction and aluminum-brass junction respectively. Where TC is temp at freezing point of water and TH is temp at boiling point of water. Show that the steady-state temperature for (a) the aluminum-brass junction is:arrow_forwardSaturated steam at 20 psia is condensing at a vertical plate with a width of 1.211 m and a height of 1 m. The surface temperature of the wall is measured as 212 °F. Determine: A. Heat transfer coefficient. B. Heat transfer rate of the vertical plate. C. If the vertical plate will be welded at each side to form a cylinder with the same height, calculate the new values of heat transfer coefficient and heat transfer rate of the vertical cylinder.arrow_forward
- All properties should be evaluated at the temperature of the steam.Saturated, pure steam at 65 ºC condenses on the surface of a vertical tube with outersurface diameter 2 cm which is maintained at a uniform temperature of 35 ºC. Determinethe tube length for a condensate flow rate of 5 x 10-3 kg/s.arrow_forwardDiscuss the assumptions made in the Nusselt’s theory of film condensation on a vertical plate.arrow_forwardKindly answer this question, T= 30 degreesarrow_forward
- The condensation process of vapors on the outside of horizontal tube banks is described by the equation below, NNU = 0.725 (g p² hfg Do³) μ Δt Ν κ At 45 C R-22 properties are: Density, p Dynamic viscosity, μ Latent heat, hfg Thermal conductivity, k where N tubes/row At = hfg AT = difference between wall surface & R-22 NNu Refrigerant - 22 condenser operating at 45 C cooled with water from cooling tower entering at 30 C and leaves at 36 C. The condenser is shell-tube type with copper tubes of 14 mm ID & 16 mm OD arranged with 3 tubes per row (N). a) Compute the convective heat transfer of R-22 in W/m²K. = 1,109 kg/m³ 0.00018 Pa s 160.9 kJ/kg 0.0779 W/m K (*50-45) = 5 C (*from sample problem #2 pipe wall temperature) diff. of temp between wall & fluid latent heat of condensation generally a function of (NR₂. Npr) D/ karrow_forwardAt 101.325 kPa, the latent heat of boiling latent heat of water is 2257 kJ/kg. Calculate the amount of heat that must be added to 1 kg of water at 27°C in order to boil. *arrow_forwardHow much thermal energy is required to boil 2.50 of water ид at 100°C into steam at 139.0°c. 2 Latent heat of vapounization is 2.26 x 106 65/08 of water T/ag & specific heat of water is 2010 I код-осarrow_forward
- Must solve all questions.arrow_forwardThe boiling temp of nitrogen at 1 atm is -196°C. The temp of liquid nitrogen in a tank open to the atmosphere at sea level will remain constant until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m² at 1 atm. Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196°C. The tank is exposed to ambient air at 15°C, with a convection heat transfer coefficient of 35 W/m?-K. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of evaporation of the liquid nitrogen in the tank as a result of heat transfer N, vapor from the ambient air if the tank is (a) not insulated, (b) insulated with 5- T= 15°C cm thick fiberglass insulation (k=0.035 W/m-K) and (c) insulated with 2- cm thick super-insulation which has an effective thermal…arrow_forwardSaturated, pure steam at a temperature of 170 oC condenses on the outer surface of a vertical tube of outer diameter 2 cm and length 1.5 m. The tube surface is maintained at a uniform temperature of 150 oC. Calculate: the local film condensation heat-transfer coefficient at the bottom of the tube. the average condensation heat-transfer coefficient over the entire length of the tube. the total condensation rate at the tube surface.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license